scholarly journals Genome sequence and characterization of five bacteriophages infecting Streptomyces coelicolor and Streptomyces venezuelae: Alderaan, Coruscant, Dagobah, Endor1 and Endor2

2020 ◽  
Author(s):  
Aël Hardy ◽  
Vikas Sharma ◽  
Larissa Kever ◽  
Julia Frunzke

AbstractStreptomyces are well-known antibiotic producers, and are also characterized by a complex morphological differentiation. Streptomyces, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting Streptomyces have been characterized compared to other genera. Here, we present the isolation and characterization of five novel Streptomyces phages. All five phages belong to the Siphoviridae family, based on their morphology as determined by transmission electron microscopy. Genome sequencing revealed that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of Streptomyces and sheds light on phage evolution and phage-host dynamics in Streptomyces.

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1065
Author(s):  
Aël Hardy ◽  
Vikas Sharma ◽  
Larissa Kever ◽  
Julia Frunzke

Streptomyces are well-known antibiotic producers, also characterized by a complex morphological differentiation. Streptomyces, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting Streptomyces have been characterized compared to other genera. Here, we present the isolation and characterization of five novel Streptomyces phages. All five phages belong to the Siphoviridae family, based on their morphology as determined by transmission electron microscopy. Genome sequencing and life style predictions suggested that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of Streptomyces and sheds light on phage evolution and phage-host dynamics in Streptomyces.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


Sign in / Sign up

Export Citation Format

Share Document