scholarly journals Shape and volume changes in erythrocyte ghosts and spectrin-actin networks.

1980 ◽  
Vol 86 (2) ◽  
pp. 371-376 ◽  
Author(s):  
R M Johnson ◽  
G Taylor ◽  
D B Meyer

In response to changes in electrolyte concentration and pH, erythrocyte ghosts can exhibit some of the characteristic shapes seen in the intact erythrocyte. These shape changes are accompanied by volume changes; both are reversible, not energy dependent, and not inhibited by sulfhydryl reagents. The volume reduction can also be seen in isolated Triton-free spectrin-actin lattices, showing that this network is capable of reversible contraction. The results suggest that reversible changes in size of the underlying cytoskeleton of the erythrocyte membrane can control cell shape.

2019 ◽  
Author(s):  
Hamidah Raduwan ◽  
Shashikala Sasidharan ◽  
Luigy Cordova Burgos ◽  
Andre G. Wallace ◽  
Martha C. Soto

AbstractCDC-42 regulation of non-muscle myosin/NMY-2 is required for polarity maintenance in the one-cell embryo of C. elegans. CDC-42 and NMY-2 regulate polarity throughout embryogenesis, but their contribution to later events of morphogenesis are less understood. We have shown that epidermal enclosure requires the GTPase CED-10/Rac1 and WAVE/Scar complex, its effector, to promote protrusions that drive enclosure through the branch actin regulator Arp2/3. Our analysis here of RGA-8, a homolog of SH3BP1/Rich1/ARHGAP17/Nadrin, with BAR and RhoGAP motifs, suggests it regulates CDC-42, so that NMY-2 promotes two events of epidermal morphogenesis: ventral enclosure and elongation. Genetic and molecular data suggest RGA-8 regulates CDC-42, and the CDC-42 effectors WSP-1 and MRCK-1, in parallel to F-BAR proteins TOCA-1 and TOCA-2. The RGA-8-CDC-42-WSP-1 pathway enriches myosin in migrating epidermal cells during ventral enclosure. We propose TOCA proteins and RGA-8 use BAR domains to localize and regenerate CDC-42 activity, thus regulating F-actin levels, through the branched actin regulator WSP-1, and myosin polarity through the myosin kinase MRCK-1. Regulated CDC-42 thus polarizes epithelia, to control cell migrations and cell shape changes of embryonic morphogenesis.SummaryRGA-8, a protein with membrane binding and actin regulatory motifs, promotes embryonic morphogenesis by localizing active CDC-42 in developing epithelia, thus controlling actin and actin motors during cell movements.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Agnik Dasgupta ◽  
Matthias Merkel ◽  
Madeline J Clark ◽  
Andrew E Jacob ◽  
Jonathan Edward Dawson ◽  
...  

How epithelial cell behaviors are coordinately regulated to sculpt tissue architecture is a fundamental question in biology. Kupffer’s vesicle (KV), a transient organ with a fluid-filled lumen, provides a simple system to investigate the interplay between intrinsic cellular mechanisms and external forces during epithelial morphogenesis. Using 3-dimensional (3D) analyses of single cells we identify asymmetric cell volume changes along the anteroposterior axis of KV that coincide with asymmetric cell shape changes. Blocking ion flux prevents these cell volume changes and cell shape changes. Vertex simulations suggest cell shape changes do not depend on lumen expansion. Consistent with this prediction, asymmetric changes in KV cell volume and shape occur normally when KV lumen growth fails due to leaky cell adhesions. These results indicate ion flux mediates cell volume changes that contribute to asymmetric cell shape changes in KV, and that these changes in epithelial morphology are separable from lumen-generated forces.


1977 ◽  
Vol 73 (3) ◽  
pp. 647-659 ◽  
Author(s):  
W Birchmeier ◽  
SJ Singer

In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.


2017 ◽  
Author(s):  
Agnik Dasgupta ◽  
Matthias Merkel ◽  
Andrew E. Jacob ◽  
Jonathan Dawson ◽  
M. Lisa Manning ◽  
...  

ABSTRACTHow epithelial cell behaviors are coordinately regulated to sculpt tissue architecture is a fundamental question in biology. Kupffer's vesicle (KV), a transient organ with a fluid - filled lumen, provides a simple system to investigate the interplay between intrinsic cellular mechanisms and external forces during epithelial morphogenesis. Using 3 - dimensional (3D) analyses of single cells we identify asymmetric cell volume changes along the anteroposterior axis of KV that coincide with asymmetric cell shape changes. Blocking ion flux prevents these cell volume changes and cell shape changes. Vertex simulations suggest cell shape changes do not depend on lumen expansion. Consistent with this prediction, asymmetric changes in KV cell volume and shape occur normally when KV lumen growth fails due to leaky cell adhesions. These results indicate ion flux mediates asymmetric cell volume changes that contribute to asymmetric cell shape changes in KV, and that these changes in epithelial morphology are separable from lumen - generated forces.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Molly C Jud ◽  
Josh Lowry ◽  
Thalia Padilla ◽  
Erin Clifford ◽  
Yuqi Yang ◽  
...  

AbstractMorphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


1989 ◽  
Vol 16 (3) ◽  
pp. 274-280
Author(s):  
Boris Isomaa ◽  
Henry Hägerstrand ◽  
Gun I.L. Paatero

Amphiphilic compounds with distinct apolar and polar parts are readily intercalated into the erythrocyte membrane. When intercalated into the membrane, amphiphiles are probably orientated so that the polar head is at the polar-apolar interface of the lipid bilayer and the hydrophobic part within the apolar core of the bilayer. However, by virtue of their difference in molecular shape from the bulk lipids of the lipid bilayer, it is possible that the intercalated amphiphiles are partly segregated from bulk lipids and accumulate at protein-lipid interfaces in the bilayer, where the packing of the bilayer lipids may be less ordered. Our studies show that amphiphiles, when intercalated into the erythrocyte membrane, trigger alterations in several membrane-connected functions. Some of the alterations induced (decreased osmotic fragility, increased passive potassium fluxes) seem to be due to non-specific interactions of the amphiphiles with the membrane, whereas other functions (ion transport mediated by membrane proteins, regulation of cell shape) seem to be sensitive to particular features of the amphiphiles. Our studies indicate that the intercalation of amphiphiles into the erythrocyte membrane must involve rearrangements within the lipid bilayer. We have suggested that, when intercalated into the lipid bilayer, amphiphiles trigger a rapid formation of non-bilayer phases, which protect the bilayer against a collapse and bring about a trans-bilayer redistribution of intercalated amphiphiles as well as of bilayer lipids. At high sublytic concentrations, this process may also involve a release of microvesicles from the membrane.


Sign in / Sign up

Export Citation Format

Share Document