scholarly journals THE FINE STRUCTURE OF OSTEOBLASTS IN THE METAPHYSIS OF THE TIBIA OF THE YOUNG RAT

1961 ◽  
Vol 9 (3) ◽  
pp. 583-595 ◽  
Author(s):  
D. A. Cameron

The appearance of osteoblasts after fixation with OsO4 is described in this paper. They have the basic structures found in other types of cells. The most striking feature is the array of rough-surfaced membranes of the endoplasmic reticulum; this feature is in keeping with the osteoblast's function of producing collagen as the bone grows. The sacs formed by these membranes probably represent the protein-containing granules described by other workers using the light microscope. They contain fine fibrillary material, and similar fibrils are to be found free in the cytoplasm. These fibrils could be tropocollagen units, although fibrils recognizable as collagen by their structure are found only outside the cell. The arrangement of the cell organelles does not seem to be related to the formation of collagen, but correlation of the fine structures of the cells with the histochemical and cytochemical findings in these cells reported by other workers leaves no doubt that they are directly concerned in the production of the organic matrix. It has not been possible to show that osteoblasts influence the passage of calcium or phosphate ions from the blood to the bone matrix.

1958 ◽  
Vol 4 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Jerry Steven Trier

The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described.


The fine structure of the tarso-metatarsus of avian embryos has been investigated by means of thin sections in the electron microscope. The morphological features of osteoblasts are similar to those of fibroblasts, and where the organic matrix is just being deposited, fibrogenesis is found to occur in intimate association with the surface of the osteogenic cells. The newly formed collagen fibrils show an axial periodicity of about 640Å with a considerable degree of fine structure; densitometer traces demonstrate that five bands and five interbands within a period are normally apparent. As transverse sections of fibrils show that they increase in diameter during development and that each fibril is invested by a less dense interfibrillar material, it must be assumed that this substance contains collagen molecules or their precursors. In the early stages of mineralization of the bone matrix small particles of less than 100Å across are localized within the main indentation of each period of the collagen fibrils, namely, between the d and ab bands. Electron diffraction of these sections demonstrates that apatite is present; this indicates that the particles are crystalline in nature. As the particles have been found in sectioned collagen fibrils they must penetrate into the fibrils to some extent; their precise site in the main interband may have a bearing on the mechanism by means of which the apetite crystals ultimately become preferentially orienated with their long axis parrallel to the collagen fibre axis.


1968 ◽  
Vol 46 (3) ◽  
pp. 303-307 ◽  
Author(s):  
Sherwin S. Desser ◽  
K. A. Wright

The major features of the cytology of oökinetes, oöcysts, and sporozoites of Leucocytozoon simondi Mathis and Leger as seen in KMnO4-fîxed midguts of Simulium rugglesi and examined in the electron microscope, are related to their appearance in Giemsa-stained light microscope preparations. Thus, blue-staining regions of oökinete and oöcyst and the posterior, darkly stained region of sporozoites correspond to regions of endoplasmic reticulum; light "vacuole-like" regions correspond to accumulations of dense material which were not membrane enclosed; and minute red-stained spots at the anterior tip of sporozoites correspond to paired organelles. The dense material of oökinetes which, in oöcysts, is segregated into developing sporozoites may function as an energy source for sporozoites. The structure and development of these stages is similar to that of Plasmodium spp. The oöcyst of L. simondi develops extracellularly, enclosed by the basal lamina of the midgut with most of its surface surrounded by the basal cell membrane of midgut epithelial cells. This location of the oöcyst may be important in determining the subsequent pattern of development of this species.


1967 ◽  
Vol 2 (4) ◽  
pp. 557-562
Author(s):  
T. P. O'BRIEN

Preliminary observations on the fine structure of the club-shaped glands on Phaseolus vulgaris leaves are reported. The perinuclear cytoplasm of the apical cells of these glands contains an abundance of microtubules. These occur either as aggregates of 2-8 or more tubules, or they may be organized around a central core of material to form a fibre-like structure. The cells also contain cortical microtubules and are rich in rough endoplasmic reticulum and dictyosomes. The nuclei of these cells also contain a proteinaceous fibre, visible in the light microscope. The possible significance of these structures is discussed in relation to cytoplasmic streaming, maintenance of cellular asymmetry, and reaction to virus infection.


Author(s):  
R. P. Becker ◽  
J. J. Wolosewick ◽  
J. Ross-Stanton

Methodology has been introduced recently which allows transmission and scanning electron microscopy of cell fine structure in semi-thin sections unencumbered by an embedding medium. Images obtained from these “resinless” sections show a three-dimensional lattice of microtrabeculfee contiguous with cytoskeletal structures and membrane-bounded cell organelles. Visualization of these structures, especially of the matiiDra-nous components, can be facilitated by employing tannic acid in the fixation step and dessicator drying, as reported here.Albino rats were fixed by vascular perfusion with 2% glutaraldehyde or 1.5% depolymerized paraformaldehyde plus 2.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.4). Tissues were removed and minced in the fixative and stored overnight in fixative containing 4% tannic acid. The tissues were rinsed in buffer (0.2M cacodylate), exposed to 1% buffered osmium tetroxide, dehydrated in ethyl alcohol, and embedded in pure polyethylene glycol-6000 (PEG). Sections were cut on glass knives with a Sorvall MT-1 microtome and mounted onto poly-L-lysine, formvar-carbon coated grids while submerged in a solution of 95% ethanol containing 5% PEG.


Author(s):  
Alan N. Hodgson

The hermaphrodite duct of pulmonate snails connects the ovotestis to the fertilization pouch. The duct is typically divided into three zones; aproximal duct which leaves the ovotestis, the middle duct (seminal vesicle) and the distal ovotestis duct. The seminal vesicle forms the major portion of the duct and is thought to store sperm prior to copulation. In addition the duct may also play a role in sperm maturation and degredation. Although the structure of the seminal vesicle has been described for a number of snails at the light microscope level there appear to be only two descriptions of the ultrastructure of this tissue. Clearly if the role of the hermaphrodite duct in the reproductive biology of pulmonatesis to be understood, knowledge of its fine structure is required.Hermaphrodite ducts, both containing and lacking sperm, of species of the terrestrial pulmonate genera Sphincterochila, Levantina, and Helix and the marine pulmonate genus Siphonaria were prepared for transmission electron microscopy by standard techniques.


2018 ◽  
Vol 69 (7) ◽  
pp. 1706-1709
Author(s):  
Nicoleta Dumitru ◽  
Andra Cocolos ◽  
Andra Caragheorgheopol ◽  
Constantin Dumitrache ◽  
Ovidiu Gabriel Bratu ◽  
...  

There is an increased interest and more studies highlight the fact that bone strength depends not only on bone tissue quantity, but also on its quality, which is characterized by the geometry and shape of bones, trabecular bone microarchitecture, mineral content, organic matrix and bone turnover. Fibrillar type I collagen is the major organic component of bone matrix, providing form and a stable template for mineralization. The biomedical importance of collagen as a biomaterial for medical and cosmetic purposes and the improvement of the molecular, cellular biology and analytical technologies, led to increasing interest in establishing the structure of this protein and in setting of the relationships between sequence, structure, and function. Bone collagen crosslinking chemistry and its molecular packing structure are considered to be distinct features. This unique post-translational modifications provide to the fibrillar collagen matrices properties such as tensile strength and viscoelasticity. Understanding the complex structure of bone type I collagen as well as the dynamic nature of bone tissues will help to manage new therapeutic approaches to bone diseases.


1975 ◽  
Vol 18 (2) ◽  
pp. 327-346
Author(s):  
F.O. Perkins

The fine structure of the haplosporidan mitotic apparatus is described from observations of plasmodial nuclei of Minchinia nelsoni, M. costalis, Minchinia sp., and Urosporidium crescens. The apparatus, which is the Kernstab of light-microscope studies, consists of a bundle of microtubules terminating in a spindle pole body (SPB) at each end of the bundle. A few microtubules extend from SPB to SPB, but most either extend from an SPB and terminate in the nucleoplasm or lie in the nucleoplasm, free of either SPB. The bundle lengthens during mitosis, increasing the SPB-to-SPB distance by a factor of 2 to 3 as compared to interphase nuclei. SPBs are not in contact with the nuclear envelope, being found always in the nucleoplasm which is delimited by the nuclear envelope throughout mitosis. The mitotic apparatus is persistent through interphase, at least in a form which is not significantly different from that found in mitotic nuclei.


1958 ◽  
Vol s3-99 (46) ◽  
pp. 279-284
Author(s):  
J.T. Y. CHOU ◽  
G. A. MEEK

The three kinds of lipid globules recognizable in the living neurones of Helix aspersa have been examined under the electron microscope. The globules of the kind that can be stained blue with methylene blue during life are seen in electron micrographs as spheres or spheroids, with concentric lamination, after calcium-osmium fixation. After fixation with sucrose-osmium laminated crescentic bodies are seen instead; these appear to be formed by distortion of the ‘blue’ globules. The yellow globules contain electrondense material, and sometimes appear reticular. It is possible that the yellow globules may originate by transformation of some of the ‘blue’ globules. The colourless globules generally appear as crenated objects; this appearance may be a shrinkage artifact. Apart from the mitochondria and the three kinds of lipid globules described, no other object large enough to be identified with the light microscope has been seen in the cytoplasm.


1977 ◽  
Vol 43 ◽  
pp. 9-9
Author(s):  
G.E. Brueckner ◽  
J.D.F. Bartoe ◽  
M.E. VanHoosier

High spectral (0,05 Å) and spatial (⋍ 1000 km) resolution spectra of the Fe XII line 1349.4 Å reveal the existence of coronal fine structures in the quiet sun against the solar disk. These coronal bright elements have an average size of 2000-3000 km; their column density can be 3 x 1017 cm –2 . In the quiet sun, outward streaming velocities of 10-15 km sec –1 can be measured by means of the Doppler effect. The total kinetic and thermal energy of the outstreaming gas can be estimated to be larger than 1 x 10 5 ergs cm –2 sec –1, enough to account for the heating of the corona and the losses of the solar wind. At the outer limb (cos θ ⋍0.1) line profiles show a strong blue asymmetry, which could be caused by expanding material in a piston-driven shock, whereby the opaque, cool piston causes the asymmetry of the line profile.


Sign in / Sign up

Export Citation Format

Share Document