scholarly journals Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells.

1984 ◽  
Vol 98 (1) ◽  
pp. 308-319 ◽  
Author(s):  
E Rodriguez-Boulan ◽  
K T Paskiet ◽  
P J Salas ◽  
E Bard

The intracellular pathway followed by the influenza virus hemagglutinin (HA) to the apical surface of Madin-Darby canine kidney cells was studied by radioimmunoassay, immunofluorescence, and immunoelectron microscopy. To synchronize the migration, we used a temperature-sensitive mutant of influenza WSN, ts61, which, at the nonpermissive temperature, 39.5 degrees C, exhibits a defect in the HA that prevents its exit from the endoplasmic reticulum. Upon transfer to permissive temperature, 32 degrees C, the HA appeared in the Golgi apparatus after 10 min, and on the apical surface after 30-40 min. In the presence of cycloheximide, the expression was not inhibited, indicating that the ts defect is reversible; a wave of HA migrated to the cell surface, where it accumulated with a half time of 60 min. After passage through the Golgi apparatus the HA was detected in a population of smooth vesicles, about twice the size of coated vesicles, located in the apical half of the cytoplasm. These HA-containing vesicles did not react with anti-clathrin antibodies. Monensin (10 microM) delayed the surface appearance of HA by 2 h, but not the transport to the Golgi apparatus. Incubation at 20 degrees C retarded the migration to the Golgi apparatus by approximately 30 min and blocked the surface appearance by acting at a late stage in the intracellular pathway, presumably at the level of the post-Golgi vesicles. The initial appearance of HA on the apical surface was in the center; no preference was observed for the tight-junctional regions.

1999 ◽  
Vol 145 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Rosa Puertollano ◽  
Fernando Martín-Belmonte ◽  
Jaime Millán ◽  
María del Carmen de Marco ◽  
Juan P. Albar ◽  
...  

The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.


2001 ◽  
Vol 12 (6) ◽  
pp. 1869-1883 ◽  
Author(s):  
Rosa Puertollano ◽  
José Angel Martı́nez-Menárguez ◽  
Alicia Batista ◽  
José Ballesta ◽  
Miguel Angel Alonso

The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine −3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.


1987 ◽  
Vol 104 (2) ◽  
pp. 231-241 ◽  
Author(s):  
M J Rindler ◽  
I E Ivanov ◽  
D D Sabatini

The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D. D. Sabatini, 1985, J. Cell Biol., 100:136-151). The microtubule-depolymerizing agents colchicine and nocodazole, as well as the microtubule assembly-promoting drug taxol, were found to interfere with the normal polarized delivery and exclusive segregation of hemagglutinin (HA) to the apical surface but not with the delivery and initial accumulation of G on the basolateral surface. Immunofluorescence analysis of permeabilized monolayers of influenza-infected MDCK cells treated with the microtubule-acting drugs demonstrated the presence of substantial amounts of HA protein on both the apical and basolateral surfaces. Moreover, in cells infected with the wild-type influenza virus, particles budded from both surfaces. Viral counts in electron micrographs showed that approximately 40% of the released viral particles accumulated in the intercellular spaces or were trapped between the cell and monolayer and the collagen support as compared to less than 1% on the basolateral surface of untreated infected cells. The effect of the microtubule inhibitors was not a result of a rapid redistribution of glycoprotein molecules initially delivered to the apical surface since a redistribution was not observed when the inhibitors were added to the cells after the HA was permitted to reach the apical surface at the permissive temperature and the synthesis of new HA was inhibited with cycloheximide. The altered segregation of the HA protein that occurs may result from the dispersal of the Golgi apparatus induced by the inhibitors or from the disruption of putative microtubules containing tracks that could direct vesicles from the trans Golgi apparatus to the cell surface. Since the vesicular stomatitis virus G protein is basolaterally segregated even when the Golgi elements are dispersed and hypothetical tracks disrupted, it appears that the two viral envelope glycoproteins are segregated by fundamentally different mechanisms and that the apical surface may be incapable of accepting vesicles carrying the G protein.


2013 ◽  
Vol 24 (8) ◽  
pp. 1196-1207 ◽  
Author(s):  
Steeve Boulant ◽  
Megan Stanifer ◽  
Comert Kural ◽  
David K. Cureton ◽  
Ramiro Massol ◽  
...  

Polarized epithelial cells that line the digestive, respiratory, and genitourinary tracts form a barrier that many viruses must breach to infect their hosts. Current understanding of cell entry by mammalian reovirus (MRV) virions and infectious subvirion particles (ISVPs), generated from MRV virions by extracellular proteolysis in the digestive tract, are mostly derived from in vitro studies with nonpolarized cells. Recent live-cell imaging advances allow us for the first time to visualize events at the apical surface of polarized cells. In this study, we used spinning-disk confocal fluorescence microscopy with high temporal and spatial resolution to follow the uptake and trafficking dynamics of single MRV virions and ISVPs at the apical surface of live polarized Madin–Darby canine kidney cells. Both types of particles were internalized by clathrin-mediated endocytosis, but virions and ISVPs exhibited strikingly different trafficking after uptake. While virions reached early and late endosomes, ISVPs did not and instead escaped the endocytic pathway from an earlier location. This study highlights the broad advantages of using live-cell imaging combined with single-particle tracking for identifying key steps in cell entry by viruses.


1983 ◽  
Vol 97 (3) ◽  
pp. 638-643 ◽  
Author(s):  
M Pesonen ◽  
K Simons

The envelope of vesicular stomatitis virus was fused with the apical plasma membrane of Madin-Darby canine kidney cells by low pH treatment. The fate of the implanted G protein was then followed using a protein A-binding assay, which was designed to quantitate the amount of G protein in the apical and the basolateral membranes. The implanted G protein was rapidly internalized at 31 degrees C, whereas at 10 degrees C no uptake was observed. Already after 15 min at 31 degrees C, a fraction of the G protein could be detected at the basolateral membrane. After 60 min 25-48% of the G protein was basolateral as measured by the protein A-binding assay. At the same time, 25-33% of the implanted G protein was detected at the apical membrane. Internalization of G protein was not affected by 20 mM ammonium chloride or by 10 microM monensin. However, the endocytosed G protein accumulated in intracellular vacuoles and redistribution back to the plasma membrane was inhibited. We conclude that the implanted G protein was rapidly internalized from the apical surface of Madin-Darby canine kidney cells and a major fraction was routed to the basolateral domain.


1990 ◽  
Vol 96 (1) ◽  
pp. 143-149
Author(s):  
J.M. Wilson ◽  
N. Fasel ◽  
J.P. Kraehenbuhl

Madin-Darby canine kidney cells (MDCK) were transfected with a cDNA encoding the glycosyl-phosphatidylinositol (GPI)-anchored protein mouse Thy-1 in order to study the steady-state surface distribution of exogenous and endogenous GPI-linked proteins. Immunofluorescence of transfected cells grown on collagen-coated coverslips showed that expression of Thy-1 was variable throughout the epithelium, with some cells expressing large amounts of Thy-1 adjacent to very faintly staining cells. Selective surface iodination of cells grown on collagen-coated or uncoated transwell filters followed by immunoprecipitation of Thy-1 demonstrated that all the Thy-1 was present exclusively in the apical plasma membrane. Although cells grown on uncoated filters had much smaller amounts of Thy-1, it was consistently localized on the apical surfaces. Immunofluorescent localization of Thy-1 on 1 micron frozen sections of filter-grown cells demonstrated that all the Thy-1 was on the apical surface and there was no detectable intracellular pool. Phosphatidylinositol-specific phospholipase C digestion of intact iodinated monolayers released Thy-1 only into the apical medium, indicating that Thy-1 was processed normally in transfected cells and was anchored by a GPI-tail. In agreement with previous findings, endogenous GPI-linked proteins were found only on the apical plasma membrane. These results suggest that there is a common mechanism for sorting and targeting of GPI-linked proteins in polarized epithelial cells.


1985 ◽  
Vol 100 (1) ◽  
pp. 136-151 ◽  
Author(s):  
M J Rindler ◽  
I E Ivanov ◽  
H Plesken ◽  
D D Sabatini

The intracellular route followed by viral envelope glycoproteins in polarized Madin-Darby canine kidney cells was studied by using temperature-sensitive mutants of vesicular stomatitis virus (VSV) and influenza, in which, at the nonpermissive temperature (39.5 degrees C), the newly synthesized glycoproteins (G proteins) and hemagglutinin (HA), respectively, are not transported out of the endoplasmic reticulum. After infection with VSV and incubation at 39.5 degrees C for 4-5 h, synchronous transfer of G protein to the plasma membrane was initiated by shifting to the permissive temperature (32.5 degrees C). Immunoelectron microscopy showed that under these conditions the protein moved to the Golgi apparatus and from there directly to a region of the lateral plasma membrane near this organelle. G protein then seemed to diffuse progressively to basal regions of the cell surface and, only after it had accumulated in the basolateral domain, it began to appear on the apical surface near the intercellular junctions. The results of these experiments indicate that the VSV G protein must be sorted before its arrival at the cell surface, and suggest that passage to the apical domain occurs only late in infection when tight junctions are no longer an effective barrier. In complementary experiments, using the temperature-sensitive mutant of influenza, cultures were first shifted from the nonpermissive temperature (39.5 degrees C) to 18.5 degrees C, to allow entrance of the glycoprotein into the Golgi apparatus (see Matlin, K.S., and K. Simons, 1983, Cell, 34:233-243). Under these conditions HA accumulated in Golgi stacks and vesicles but did not reach the plasma membrane. When the temperature was subsequently shifted to 32.5 degrees C, HA rapidly appeared in discrete regions of the apical surface near, and often directly above, the Golgi elements, and later diffused throughout this surface. To ensure that the anti-HA antibodies had access to lateral domains, monolayers were treated with a hypertonic medium to dilate the intercellular spaces. Some labeling was then observed in the lateral plasma membranes soon after the shift, but this never increased beyond 1.0 gold particle/micron, whereas characteristic densities of labeling in apical surfaces soon became much higher (approximately 10 particles/micron). Our results suggest that the bulk of HA follows a direct pathway leading from the Golgi to regions of the apical surface close to trans-Golgi cisternae.


1985 ◽  
Vol 100 (6) ◽  
pp. 2001-2007 ◽  
Author(s):  
M Sabanero ◽  
A Gonzalez-Robles ◽  
I Meza

We have identified and immunochemically characterized a 36,000-dalton membrane glycoprotein from Madin-Darby canine kidney cells. This protein is surface-labeled by lactoperoxidase-mediated iodination and metabolically labeled by [35S]methionine. It binds to Concanavalin A and incorporates 2-D-3H-mannose residues, thus indicating it is a glycoprotein. Rabbit polyclonal antibodies against this protein evenly decorate the external surface of trypsinized, unpolarized cells. The external apical surface of confluent monolayers, grown under culture conditions in which the tight junctions are closed and the cells have acquired polarity, is also evenly stained. The basolateral aspects of the external surface are stained only when the tight junctions are opened by removal of Ca++ or when the antibody has access to the monolayer from the basal side, which indicates an even distribution of this antigen on the surface of polarized cells. The antibody has no inhibitory effect on the opening and resealing of tight junctions in dense cultures, but does inhibit the attachment and spreading of cells on a substrate, which then blocks the establishment of a confluent functional monolayer.


2005 ◽  
Vol 72 ◽  
pp. 39-45 ◽  
Author(s):  
Paula Urquhart ◽  
Susan Pang ◽  
Nigel M. Hooper

MDCK (Madin-Darby canine kidney) cells represent a good model of polarized epithelium to investigate the signals involved in the apical targeting of proteins. As reported previously, GPI (glycosylphosphatidylinositol) anchors mediate the apical sorting of proteins in polarized epithelial cells through their interaction with lipid rafts. However, using a naturally N-glycosylated and GPI-anchored protein, we found that the GPI anchor does not influence the targeting of the protein. It is, in fact, the N-glycans that signal the protein to the apical surface. In the present review, the role of N-glycans and GPI anchors as apical signals is discussed along with the putative mechanisms involved.


Sign in / Sign up

Export Citation Format

Share Document