scholarly journals Concentrations of high-mobility-group proteins in the nucleus and cytoplasm of several rat tissues.

1984 ◽  
Vol 99 (2) ◽  
pp. 648-654 ◽  
Author(s):  
L Kuehl ◽  
B Salmond ◽  
L Tran

Nuclear and cytoplasmic fractions were isolated from various tissues of the rat by a nonaqueous technique. The high-mobility-group (HMG) proteins were extracted from these fractions with acid and separated by one- and two-dimensional PAGE. The concentrations of high-mobility-group proteins HMG1, HMG2, and HMG17 in the nucleus and cytoplasm were then estimated from the staining intensities of the electrophoretic bands. The cytoplasmic concentrations of these proteins were very low--usually less than 1/30 of those present in the corresponding nuclear fractions. For the tissues studied (liver, kidney, heart, and lung), the concentrations of HMG proteins in the nucleus did not differ significantly from one tissue to another. Averaged over the four tissues investigated, there were 0.28 molecule of HMG1, 0.18 molecule of HMG2, and 0.46 molecule of HMG17 per nucleosome. These values are considerably higher than those that have been reported previously.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephanie Dobersch ◽  
Karla Rubio ◽  
Indrabahadur Singh ◽  
Stefan Günther ◽  
Johannes Graumann ◽  
...  

AbstractIn addition to nucleosomes, chromatin contains non-histone chromatin-associated proteins, of which the high-mobility group proteins are the most abundant. Chromatin-mediated regulation of transcription involves DNA methylation and histone modifications. However, the order of events and the precise function of high-mobility group proteins during transcription initiation remain unclear. Here we show that high-mobility group AT-hook 2 protein (HMGA2) induces DNA nicks at the transcription start site, which are required by the histone chaperone FACT complex to incorporate nucleosomes containing the histone variant H2A.X. Further, phosphorylation of H2A.X at S139 (γ-H2AX) is required for repair-mediated DNA demethylation and transcription activation. The relevance of these findings is demonstrated within the context of TGFB1 signaling and idiopathic pulmonary fibrosis, suggesting therapies against this lethal disease. Our data support the concept that chromatin opening during transcriptional initiation involves intermediates with DNA breaks that subsequently require DNA repair mechanisms to ensure genome integrity.


2008 ◽  
Vol 9 (1) ◽  
pp. 170-179 ◽  
Author(s):  
Donna R Louie ◽  
Kristen K. Gloor ◽  
Scott C. Galasinski ◽  
Katheryn A. Resing ◽  
Natalie G. Ahn

Biochemistry ◽  
1983 ◽  
Vol 22 (21) ◽  
pp. 5008-5015 ◽  
Author(s):  
Ronald L. Seale ◽  
Anthony T. Annunziato ◽  
Richard D. Smith

1985 ◽  
Vol 227 (1) ◽  
pp. 271-276 ◽  
Author(s):  
K Kimura ◽  
N Katoh ◽  
K Sakurada ◽  
S Kubo

Phospholipid-sensitive Ca2+-dependent protein kinase was partially purified from total particulate fraction of pig testis. The enzyme phosphorylated high mobility group 1 protein (HMG 1), one of the major chromatin-associated non-histone proteins. Other HMG proteins (HMG 2, 14 and 17) were not phosphorylated by the enzyme. Exhaustive phosphorylation of HMG 1 revealed that 1 mol of phosphate was incorporated/mol of HMG 1. The apparent Km value for HMG 1 was 3.66 microM. 1,3-Diolein stimulated the phosphorylation at 10 microM-Ca2+ in the presence of phosphatidylserine. The phosphorylation of HMG 1 was inhibited by adriamycin, an inhibitor of spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document