hmg proteins
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 4)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Vol 9 (1) ◽  
pp. 123-134
Author(s):  
Mary Ann S. Arndt ◽  
William D. Wheaton

The treatment of severe acute kidney injury with dialytic support for renal replacement therapy can be life sustaining and permit recovery from critical illness. The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and reduced in the corresponding adult tissues. We used used in study C57BL/6, HMG+/− and HMG−/− mice and found that HMG is expressed in the mouse embryonic kidney at the cortex area. HMG knockout led to enhanced Wnt/β-catenin signaling pathway. Analysis of siRNA-mediated loss-of-function experiments in embryonic kidney culture confirmed the role of HMG as a key regulator of cortex epithelium differentiation.


2021 ◽  
Vol 9 (1) ◽  
pp. 135-144

recovery from critical illness.The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and reduced in the corresponding adult tissues. We used used in study C57BL/6, HMG+/− and HMG−/−  mice and found that HMG is expressed in the mouse embryonic kidney at the cortex area. HMG knockout led to enhanced Wnt/β-catenin signaling pathway. Analysis of siRNA-mediated loss-of-function experiments in embryonic kidney culture confirmed the role of HMG as a key regulator of cortex epithelium differentiation.


2020 ◽  
Author(s):  
Stephanie Dobersch ◽  
Karla Rubio ◽  
Indrabahadur Singh ◽  
Stefan Günther ◽  
Johannes Graumann ◽  
...  

SUMMARYIn addition to nucleosomes, chromatin contains non-histone chromatin-associated proteins, of which the high-mobility group (HMG) proteins are the most abundant. Chromatin-mediated regulation of transcription involves DNA methylation and histone modifications. However, the order of events and the precise function of HMG proteins during transcription initiation remain unclear. Here we show that HMG AT-hook 2 protein (HMGA2) induces DNA nicks at the transcription start site, which are required by the histone chaperone FACT (facilitates chromatin transcription) complex to incorporate nucleosomes containing the histone variant H2A.X. Further, phosphorylation of H2A.X at S139 (γ-H2AX) is required for repair-mediated DNA demethylation and transcription activation. The relevance of these findings is demonstrated within the context of TGFB1 signaling and idiopathic pulmonary fibrosis, suggesting therapies against this lethal disease. Our data support that chromatin opening during transcriptional initiation involves intermediates with DNA breaks that subsequently require DNA repair mechanisms to ensure the integrity of the genome.


2019 ◽  
Author(s):  
Kostantin Kiianitsa ◽  
Nancy Maizels

ABSTRACTProteins form adducts with nucleic acids in a variety of contexts, and these adducts may be cytotoxic if not repaired. Here we apply a proteomic approach to identification of proteins adducted to DNA or RNA in normally proliferating cells. This approach combines RADAR fractionation of proteins covalently bound to nucleic acids with quantitative mass spectrometry (MS). We demonstrate that “RADAR-MS” can quantify induction of TOP1- or TOP2-DNA adducts in cells treated with topotecan or etoposide, respectively, and also identify intermediates in physiological adduct repair. We validate RADAR-MS for discovery of previously unknown adducts by determining the repertoires of adducted proteins in two different normally proliferating human cell lines, CCRF-CEM T cells and GM639 fibroblasts. These repertoires are significantly similar with one another and exhibit robust correlations in their quantitative profiles (Spearman r=0.52). A very similar repertoire is identified by the classical approach of CsCl buoyant density gradient centrifugation. We find that in normally proliferating human cells, the repertoire of adducted proteins — the “adductome” — is comprised of a limited number of proteins belonging to specific functional groups, and that it is greatly enriched for histones, HMG proteins and proteins involved in RNA splicing. Treatment with low concentrations of formaldehyde caused little change in the composition of the repertoire of adducted proteins, suggesting that reactive aldehydes generated by ongoing metabolic processes may contribute to protein adduction in normally proliferating cells. The identification of an endogenous adductome highlights the importance of adduct repair in maintaining genomic structure and the potential for deficiencies in adduct repair to contribute to cancer.


2018 ◽  
Vol 19 (8) ◽  
pp. 2451 ◽  
Author(s):  
Georgi Momekov ◽  
Iva Ugrinova ◽  
Evdokia Pasheva ◽  
Daniela Tsekova ◽  
Galina Gencheva

Two paramagnetic PdIII complexes of hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp), namely a dinuclear one [PdIII2(Hp-3H)Cl3(H2O)5]·2PdCl2, Pd1 and a mononuclear metalloporphyrin type [PdIII(Hp-2H)Cl(H2O)]·H2O, Pd2 have been synthesized reproducibly and isolated as neutral compounds at different reaction conditions. Their structure and solution stability have been assayed by UV/Vis and EPR spectroscopy. The compounds researched have shown in vitro cell growth inhibitory effects at micromolar concentration against a panel of human tumor cell lines. A DNA fragmentation test in the HL-60 cell line has indicated that Pd1 causes comparable proapoptotic effects with regard to cisplatin but at substantially higher concentrations. Pd1 and cisplatin form intra-strand guanine bis-adducts as the palladium complex is less capable of forming DNA adducts. This demonstrates its cisplatin-dissimilar pharmacological profile. The test for efficient removal of DNA-adducts by the NER synthesis after modification of pBS plasmids with either cisplatin or Pd1 has manifested that the lesions induced by cisplatin are far better recognized and repaired compared those of Pd1. The study on the recognition and binding of the HMGB-1 protein to cisplatin or Pd1 modified DNA probes have shown that HMG proteins are less involved in the palladium agent cytotoxicity.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. 11573-11573 ◽  
Author(s):  
Nadia Hindi ◽  
Rafael Ramos ◽  
Javier Martinez-Trufero ◽  
Rosa Maria Alvarez Alvarez ◽  
Magda Cordeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document