scholarly journals STUDIES ON STREPTOCOCCUS PYOGENES

1959 ◽  
Vol 109 (6) ◽  
pp. 589-600 ◽  
Author(s):  
Hutton D. Slade ◽  
Yoshitami Kimura

Heat-killed cells of Group A streptococci caused death of the adrenalectomized rat. While the adrenalectomized rat readily succumbed to intraperitoneal infection with living cells, death was due primarily to toxicity. The normal rat was highly resistant under either condition. For studies on the toxic materials, the cells of numerous serological types of group A streptococci, and of a Group B and a Group D streptococcus, were extracted with 0.1 N HCl at 100°C. or by sonic oscillation. The extracts, containing macromolecular components, were subjected to chemical fractionation and purification. C substance and M protein of Group A streptococci released from the cell by sonic oscillation were toxic to the adrenalectomized rat in quantities of 1 mg./100 gm. rat. Death usually occurred within 2 hours. On the other hand, C substance and M protein released from the cell with HCl at 100°C. were relatively non-toxic to the adrenalectomized rat. The sonic-extracted C substance of streptococcal Groups B, C, and D was also toxic. The toxic property of the C and M preparations was neutralized in vitro in each case by group and type-specific rabbit antiserum. Heterologous antiserum was without effect. Adrenalectomized rats which received homologous antiserum 18 hours before challenge were also resistant to the toxicity of the C and M preparations. Trypsin destroyed the toxic effect of the M protein preparations and was without effect on the toxicity of the C substance. The R antigen and a nucleoprotein component of Group A streptococci, preparations of protein from Groups B and D streptococci, and coagulase from Staphylococcus aureus were all found to be essentially non-toxicic for the adrenalectomized rat. Large quantities of peptone, crystalline albumin, and rabbit serum were also without effect.

1960 ◽  
Vol 111 (3) ◽  
pp. 309-322 ◽  
Author(s):  
James G. Hirsch ◽  
Alice B. Church

Studies have been made on phagocytosis and killing of Group A streptococci during mixing with suspensions of leucocytes in vitro. Under appropriate test conditions an anti-phagocytic effect can be demonstrated for the streptococcal hyaluronic acid capsule as well as for its M protein. The results obtained suggest an explanation for the suitability of human, but not rabbit, blood for opsonophagocytic tests designed to measure type-specific streptococcal antibodies. Human sera contain a factor which counteracts the anti-phagocytic effects of streptococcal hyaluronic acid capsules, and hence human blood serves well for detection of antibodies which combine with the only other phagocytosis-resisting component of this microorganism, namely M protein. In contrast, rabbit sera contain none of this factor, and addition of antibody to M protein to phagocytic test systems employing rabbit serum does not necessarily render the streptococci susceptible to engulfment by white cells, since the hyaluronic acid capsule may continue to interfere with phagocytosis. The nature of the human serum factor which opsonizes encapsulated streptococci is unknown. It does not appear to be an antibody or an enzyme capable of depolymerizing hyaluronic acid.


2005 ◽  
Vol 73 (10) ◽  
pp. 6383-6389 ◽  
Author(s):  
Francis Michon ◽  
Samuel L. Moore ◽  
John Kim ◽  
Milan S. Blake ◽  
France-Isabelle Auzanneau ◽  
...  

ABSTRACT A number of epitope specificities associated with the cell wall polysaccharide antigen of group A streptococci were identified in a polyclonal rabbit antiserum induced in rabbits by whole group A streptococci and in polyclonal convalescent human antisera from children that had recovered from streptococcal A infections. The identification was achieved by using a series of synthetic oligosaccharides, glycoconjugates, and bacterial polysaccharide inhibitors to inhibit the binding of the group A helical polysaccharide to the polyclonal antisera. The exclusively dominant epitope expressed in the convalescent human antisera was the doubly branched extended helical hexasaccharide with the structure α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap(1→3)α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap. The hexasaccharide epitope also bound with the highest immunoreactivity to the rabbit antiserum. In contrast, the human antisera did not show significant binding to the singly branched pentasaccharide with the structure α-l-Rhap(1→2)α-l-Rhap(1→3)α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap or the branched trisaccharide α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap, although both these haptens bound significantly to the same rabbit antiserum, albeit with less immunoreactivity than the hexasaccharide. Inhibition studies using streptococcal group A and B rabbit antisera and the inhibitors indicated above also suggested that the group A carbohydrate, unlike the group B streptococcal polysaccharide, does not contain the disaccharide α-l-Rhap(1→2)α-l-Rhap motif at its nonreducing chain terminus, stressing the importance of mapping the determinant specificities of these two important streptococcal subcapsular group polysaccharides to fully understand the serological relationships between group A and group B streptococci.


2003 ◽  
Vol 71 (9) ◽  
pp. 5097-5103 ◽  
Author(s):  
Harry S. Courtney ◽  
David L. Hasty ◽  
James B. Dale

ABSTRACT Serum opacity factor (SOF) is a protein expressed by Streptococcus pyogenes that opacifies mammalian serum. SOF is also a virulence factor of S. pyogenes, but it has not been previously shown to elicit a protective immune response. Herein, we report that SOF evokes bactericidal antibodies against S. pyogenes in humans, rabbits, and mice. Rabbit antiserum against purified recombinant SOF2 opsonized SOF-positive M type 2, 4, and 28 S. pyogenes in human blood but had no effect on SOF-negative M type 5 S. pyogenes. Furthermore, affinity-purified human antibodies against SOF2 also opsonized SOF-positive streptococci. A combination of antisera against M2 and SOF2 proteins was dramatically more effective in killing streptococci than either antiserum alone, indicating that antibodies against SOF2 enhance the opsonic efficiency of M protein antibodies. Mice tolerated an intravenous injection of 100 μg of SOF without overt signs of toxicity, and immunization with SOF protected mice against challenge infections with M type 2 S. pyogenes. These data indicate that SOF evokes opsonic antibodies that may protect against infections by SOF-positive serotypes of group A streptococci and suggest that different serotypes of SOF have common epitopes that may be useful vaccine candidates to protect against group A streptococcal infections.


2002 ◽  
Vol 70 (4) ◽  
pp. 2166-2170 ◽  
Author(s):  
James B. Dale ◽  
Edna Y. Chiang ◽  
David L. Hasty ◽  
Harry S. Courtney

ABSTRACT Virtually all group A streptococci (GAS) produce streptolysin S (SLS), a cytolytic toxin that is responsible for the beta-hemolysis surrounding colonies of the organisms grown on blood agar. SLS is an important virulence determinant of GAS, and recent studies have identified a nine-gene locus that is responsible for synthesis and transport of the toxin. SLS is not immunogenic; thus, no neutralizing antibodies are evoked during the course of natural infection. In the present study, we show that a synthetic peptide containing amino acid residues 10 to 30 of the putative SLS (SagA) propeptide [SLS(10-30)] coupled to keyhole limpet hemocyanin evoked antibodies in rabbits that completely neutralized the hemolytic activity of the toxin in vitro. Inhibition of hemolysis was reversed by preincubation of the immune serum with soluble, unconjugated peptide, indicating the specificity of the antibodies. In addition, antibodies that were affinity purified over an SLS(10-30) peptide column completely inhibited SLS-mediated hemolysis. The SLS(10-30) antisera did not opsonize group A streptococci; however, when combined with type-specific M protein antisera, the SLS antibodies significantly enhanced phagocytosis mediated by M protein antibodies. Thus, we have shown for the first time that it is possible to raise neutralizing antibodies against one of the most potent bacterial cytolytic toxins known. Our data also provide convincing evidence that the sagA gene actually encodes the SLS peptide of GAS. The synthetic peptide may prove to be an important component of vaccines designed to prevent GAS infections.


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Sanaz Salehi ◽  
Claudia M. Hohn ◽  
Thomas A. Penfound ◽  
James B. Dale

ABSTRACTThe clinical development of group A streptococcal (GAS) vaccines will require the implementation of a standardized, high-throughput assay to measure the activity of functional opsonic antibodies in vaccine recipients. In the present study, we adapted and modified the HL-60-based protocol that was developed for the detection of opsonic antibodies againstStreptococcus pneumoniaefor use with multiple M types of GAS. Modifications of the assay conditions permitted the evaluation of 21 different M types of GAS in the assay. The specificity of the antibody-mediated opsonization was demonstrated by inhibition with homologous, but not heterologous, M proteins. Maximum rates of opsonophagocytic killing (OPK) of 14 different M types promoted by rabbit antiserum against the 30-valent M protein-based vaccine were comparable in whole-blood and HL-60 assays. Data are also presented showing OPK serum titers (opsonic index) of naturally acquired human antibodies present in IVIG [intravenous immune globulin (human)]. Results of the HL-60 assay performed on different days using 21 different M types of GAS and IVIG as the antibody source were significantly concordant. This report indicates that the OPK assay conditions may be optimized for the measurement of opsonic antibodies against a number of epidemiologically important M types of GAS and, once standardized, should facilitate the clinical development of effective vaccines to prevent these infections.IMPORTANCEMeasuring functional opsonic antibodies against group A streptococci is an important component of the clinical development path for effective vaccines. Prior studies have used an assay developed over 60 years ago that relied on whole human blood as the source of phagocytes and complement, both of which are critical components of antibody-mediated killing assays. In this study, we adapted an assay that uses the HL-60 human promyelocytic leukemia cell line as phagocytic cells and baby rabbit serum as a source of complement for detection of opsonic antibodies against group A streptococci. On the basis of some of the known biological characteristics of the bacteria, we modified the assay conditions to support the evaluation of 21 epidemiologically important M types and demonstrated the utility and reproducibility of the assay for measurement of functional opsonic antibody levels.


1959 ◽  
Vol 110 (4) ◽  
pp. 617-628 ◽  
Author(s):  
Marie Judith Foley ◽  
W. Barry Wood

A quantitative study of the combined antiphagocytic effects of the M protein and the hyaluronic acid capsules of four strains of Group A streptococci revealed the following facts relating to their intraperitoneal virulence in mice and rats: 1. The most virulent strain, S23M (matt), produced both a large hyaluronic acid capsule and a full complement of M protein, the combined effects of which rendered the organism highly resistant to surface phagocytosis. 2. The slightly less virulent strain, T14/46 (matt virulent) was somewhat more susceptible to surface phagocytosis owing to the fact that its smaller capsule was less antiphagocytic than that of the S23M organism. 3. The glossy variant of the S23 strain (S23G), which ranked third in virulence, was still more susceptible to surface phagocytosis because of its lack of detectable M substance. Its large hyaluronic acid capsule, however, was capable of protecting it against phagocytosis on glass. 4. The least virulent strain, T14 (matt avirulent), was the most susceptible of all to phagocytosis. Though it possessed both M substance and capsule, which together prevented its phagocytosis on glass, each of them was shown to be quantitatively and functionally deficient as compared to Strain S23M. The differences in phagocytability, which appear to be directly related to the pathogenicity of the organisms, could be adequately demonstrated in vitro only by phagocytic tests designed to measure surface phagocytosis in the absence of opsonins. This fact is in keeping with the observation, previously reported, that surface phagocytosis plays a critical role in the defense of the host, particularly during the earliest stages of experimental streptococcal infections. Its possible relation to suppuration during the later stages of infection is also discussed.


2005 ◽  
Vol 12 (7) ◽  
pp. 833-836 ◽  
Author(s):  
James B. Dale ◽  
Thomas Penfound ◽  
Edna Y. Chiang ◽  
Valerie Long ◽  
Stanford T. Shulman ◽  
...  

ABSTRACT Group A streptococci cause a wide spectrum of clinical illness. One of several strategies for vaccine prevention of these infections is based on the type-specific M protein epitopes. A multivalent M protein-based vaccine containing type-specific determinants from 26 different M serotypes is now in clinical trials. Recent epidemiologic studies have shown that, within some serotypes, the amino-terminal M protein sequence may show natural variation, giving rise to subtypes. This raises the possibility that vaccine-induced antibodies against the parent type may not be as effective in promoting bactericidal killing of variant subtypes. In the present study we used rabbit antisera against the 26-valent M protein-based vaccine in bactericidal tests against M1, M3, and M5 streptococci, which were represented by multiple subtypes. We show that the vaccine antibodies effectively promoted in vitro bactericidal activity despite the fact that the M proteins contained naturally occurring variant sequences in the regions corresponding to the vaccine sequence. Our results show that the variant M proteins generally do not result in significant differences in opsonization promoted by rabbit antisera raised against the 26-valent vaccine, suggesting that a multivalent M protein vaccine may not permit variant subtypes of group A streptococci to escape in a highly immunized population.


1999 ◽  
Vol 43 (4) ◽  
pp. 930-936 ◽  
Author(s):  
Kumthorn Malathum ◽  
Teresa M. Coque ◽  
Kavindra V. Singh ◽  
Barbara E. Murray

ABSTRACT The in vitro activities of two new ketolides, HMR 3647 and HMR 3004, were tested by the agar dilution method against 280 strains of gram-positive bacteria with different antibiotic susceptibility profiles, including Staphylococcus aureus,Enterococcus faecalis, Enterococcus faecium,Streptococcus spp. (group A streptococci, group B streptococci, Streptococcus pneumoniae, and alpha-hemolytic streptococci). Seventeen erythromycin-susceptible (Ems), methicillin-susceptible S. aureus strains were found to have HMR 3647 and HMR 3004 MICs 4- to 16-fold lower than those of erythromycin (MIC at which 50% of isolates were inhibited [MIC50] [HMR 3647 and HMR 3004], 0.03 μg/ml; range, 0.03 to 0.06 μg/ml; MIC50 [erythromycin], 0.25 μg/ml; range, 0.25 to 0.5 μg/ml). All methicillin-resistant S. aureus strains tested were resistant to erythromycin and had HMR 3647 and HMR 3004 MICs of >64 μg/ml. The ketolides were slightly more active against E. faecalis than against E. faecium, and MICs for individual strains varied with erythromycin susceptibility. The MIC50s of HMR 3647 and HMR 3004 against Ems enterococci (MIC ≤ 0.5 μg/ml) and those enterococcal isolates with erythromycin MICs of 1 to 16 μg/ml were 0.015 μg/ml. E. faecalis strains that had erythromycin MICs of 128 to >512 μg/ml showed HMR 3647 MICs in the range of 0.03 to 16 μg/ml and HMR 3004 MICs in the range of 0.03 to 64 μg/ml. In the group of E. faecium strains for which MICs of erythromycin were ≥512 μg/ml, MICs of both ketolides were in the range of 1 to 64 μg/ml, with almost all isolates showing ketolide MICs of ≤16 μg/ml. The ketolides were also more active than erythromycin against group A streptococci, group B streptococci,S. pneumoniae, rhodococci, leuconostocs, pediococci, lactobacilli, and diphtheroids. Time-kill studies showed bactericidal activity against one strain of S. aureus among the four strains tested. The increased activity of ketolides against gram-positive bacteria suggests that further study of these agents for possible efficacy against infections caused by these bacteria is warranted.


1982 ◽  
Vol 47 (03) ◽  
pp. 218-220 ◽  
Author(s):  
P Sié ◽  
E Letrenne ◽  
C Caranobe ◽  
M Genestal ◽  
B Cathala ◽  
...  

SummaryIn order to detect impaired synthesis of blood coagulation factors associated to consumption coagulopathy, a simultaneous evaluation of factor II-related antigen (II rAg) and of antithrombin III (AT III) was carried out in 16 patients affected with severe defibrination. An in vitro preliminary study on plasma and serum demonstrated that the levels of II rAg and of AT III, assessed by the Laurell technique with Behring antisera, were not reduced by the coagulation process. The patients were, a posteriori, classified into two groups according to the absence (group A) or the presence (group B) of factors predisposing to liver failure such as metastasis, cirrhosis, and prolonged shock. II rAg and AT III levels are significantly correlated; they are in the normal range in group A but reduced in group B. Thus II rAg or AT III level determinations are useful markers in the detection of liver failure associated to the consumption phenomenon. These results also suggest that part of the decreased AT III levels reported in severe cases of disseminated intravascular coagulation may be the consequence of an associated liver failure.


Sign in / Sign up

Export Citation Format

Share Document