opsonophagocytic killing
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Debaki R. Howlader ◽  
Sayan Das ◽  
Ti Lu ◽  
Gang Hu ◽  
David J. Varisco ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections in humans. In addition to its innate antibiotic resistance, P. aeruginosa is very effective in acquiring resistance resulting in the emergence of multi-drug resistance strains and a licensed vaccine is not yet available. We have previously demonstrated the protective efficacy of a novel antigen PaF (Pa Fusion), a fusion of the type III secretion system (T3SS) needle tip protein, PcrV, and the first of two translocator proteins, PopB. PaF was modified to provide a self-adjuvanting activity by fusing the A1 subunit of the heat-labile enterotoxin from Enterotoxigenic E. coli to its N-terminus to give L-PaF. In addition to providing protection against 04 and 06 serotypes of P. aeruginosa, L-PaF elicited opsonophagocytic killing and stimulated IL-17A secretion, which have been predicted to be required for a successful vaccine. While monomeric recombinant subunit vaccines can be protective in mice, this protection often does not transfer to humans where multimeric formulations perform better. Here, we use two unique formulations, an oil-in-water (o/w) emulsion and a chitosan particle, as well as the addition of a unique TLR4 agonist, BECC438 (a detoxified lipid A analogue designated Bacterial Enzymatic Combinatorial Chemistry 438), as an initial step in optimizing L-PaF for use in humans. The o/w emulsion together with BECC438 provided the best protective efficacy, which correlated with high levels of opsonophagocytic killing and IL-17A secretion, thereby reducing the lung burden among all the vaccinated groups tested.


2021 ◽  
Author(s):  
Peng Li ◽  
Xiuran Wang ◽  
Xiangwan Sun ◽  
Jesse Cimino ◽  
Ziqiang Guan ◽  
...  

To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitA T fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitA T bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 10 6 CFU (∼30 LD 50 ) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009513
Author(s):  
Hannes Eichner ◽  
Jens Karlsson ◽  
Laura Spelmink ◽  
Anuj Pathak ◽  
Lok-To Sham ◽  
...  

Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Freda E.-C. Jen ◽  
Margaret R. Ketterer ◽  
Evgeny A. Semchenko ◽  
Christopher J. Day ◽  
Kate L. Seib ◽  
...  

ABSTRACT The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis. Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae. Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea. IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae. The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae. In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae. These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


2021 ◽  
Vol 118 (7) ◽  
pp. e2016772118 ◽  
Author(s):  
Ana Rita Cruz ◽  
Maurits A. den Boer ◽  
Jürgen Strasser ◽  
Seline A. Zwarthoff ◽  
Frank J. Beurskens ◽  
...  

Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.


2020 ◽  
Author(s):  
Chuang Wan ◽  
Chen Gao ◽  
Qin Xie ◽  
Yin Wang ◽  
Xin Cheng ◽  
...  

Abstract BackgroundInfections due to Pseudomonas aeruginosa (PA) are becoming a serious threat to patients in intensive care units. A PA vaccine is a practical and economical solution to solve the problems caused by PA infection successfully. In recent years, several antigen candidates have been tested in animal and human clinical trials, but none of them has been approved to date. An alternative strategy for antigen screening and protective antigens is in urgent demand.MethodsIn this study, we generated a genome-wide library of PA protein fragments tagged with maltose-binding protein (MBP). Using sera from patients who recovered after PA infection, we identified novel protective antigens and investigate the mechanism of these antigens induced protections.Resultswe identified a novel protective antigen, FlgE, which is the structural component of the flagella hook. Vaccination with recombinant FlgE (reFlgE) induced a Th2-predominant immune response and reduced bacterial load and inflammation in PA-infected mice. Anti-reFlgE antibodies recognized native FlgE on the bacterial membrane in vitro and conferred protection in mice, which may be due to the mediation of opsonophagocytic killing and inhibition of bacterial motility. In addition, the combination of reFlgE with rePcrVNH, an engineered antigen we reported previously, provided elevated protection against PA infection.ConclusionOur data demonstrate that FlgE is a promising vaccine candidate for PA and provide a new strategy for the efficient screening of antigens of other pathogens.


2020 ◽  
Vol 117 (37) ◽  
pp. 22992-23000
Author(s):  
Xinhai Chen ◽  
Miaomiao Shi ◽  
Xin Tong ◽  
Hwan Keun Kim ◽  
Lai-Xi Wang ◽  
...  

Antibodies may bind to bacterial pathogens or their toxins to control infections, and their effector activity is mediated through the recruitment of complement component C1q or the engagement with Fcγ receptors (FcγRs). For bacterial pathogens that rely on a single toxin to cause disease, immunity correlates with toxin neutralization. Most other bacterial pathogens, including Staphylococcus aureus, secrete numerous toxins and evolved multiple mechanisms to escape opsonization and complement killing. Several vaccine candidates targeting defined surface antigens of S. aureus have failed to meet clinical endpoints. It is unclear that such failures can be solely attributed to the poor selection of antibody targets. Thus far, studies to delineate antibody-mediated uptake and killing of Gram-positive pathogens remain extremely limited. Here, we exploit 3F6-hIgG1, a human monoclonal antibody that binds and neutralizes the abundant surface-exposed Staphylococcal protein A (SpA). We find that galactosylation of 3F6-hIgG1 that favors C1q recruitment is indispensable for opsonophagocytic killing of staphylococci and for protection against bloodstream infection in animals. However, the simple removal of fucosyl residues, which results in reduced C1q binding and increased engagement with FcγR, maintains the opsonophagocytic killing and protective attributes of the antibody. We confirm these results by engineering 3F6-hIgG1 variants with biased binding toward C1q or FcγRs. While the therapeutic benefit of monoclonal antibodies against infectious disease agents may be debatable, the functional characterization of such antibodies represents a powerful tool for the development of correlates of protection that may guide future vaccine trials.


Bioanalysis ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 1003-1020 ◽  
Author(s):  
Katrina M Nolan ◽  
Marie E Bonhomme ◽  
Christina J Schier ◽  
Tina Green ◽  
Joseph M Antonello ◽  
...  

Background: To streamline and improve throughput, the agar-based multiplexed opsonophagocytic killing assay (MOPA) was optimized and validated on a microcolony platform for use in the Phase III clinical trial program for V114, an MSD 15-valent pneumococcal conjugate vaccine candidate. Results & methodology: The precision, dilutional linearity and specificity of the microcolony MOPA (mMOPA) were assessed for each serotype in validation experiments. All prespecified acceptance criteria on assay performance were satisfied. Accuracy was assessed by testing 007sp and the US FDA reference panel and comparing to consensus values. The mMOPA produced comparable results to other opsonophagocytic killing assays/MOPAs. Conclusion: The mMOPA is suitable for measuring functional antibodies in adult and pediatric samples. Benefits include throughput, reduced analyst-to-analyst variability and automation potential.


Sign in / Sign up

Export Citation Format

Share Document