synthetic oligosaccharides
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Paulina M Kaplonek ◽  
Ling Yao ◽  
Katrin Reppe ◽  
Franziska M Voss ◽  
Thomas Kohler ◽  
...  

Streptococcus pneumoniae infections are the leading cause of child mortality globally. Current vaccines fail to induce a protective immune response towards a conserved part of the pathogen, resulting in new serotypes causing disease. Therefore, new vaccine strategies are urgently needed. Described is a two-pronged approach combining S.pneumoniae proteins, pneumolysin and PspA, with a precisely defined synthetic oligosaccharide, whereby the carrier protein acts as a serotype-independent antigen to provide additional protection. Proof of concept in mice and swine models revealed that the conjugates inhibit colonization of the nasopharynx, decrease the bacterial load and reduce disease severity in the bacteria challenged model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model. A combination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jürgen Schiller ◽  
Katharina Lemmnitzer ◽  
Jan-Niklas Dürig ◽  
Jörg Rademann

Abstract High amounts of glycosaminoglycans (GAG) such as hyaluronan (HA) occur in connective tissues. There is nowadays increasing evidence that a “sulfation code” exists which mediates numerous GAG functions. High molecular weight and inhomogeneity of GAG, however, aggravated detailed studies. Thus, synthetic oligosaccharides were urgently required. We will review here chemoenzymatic and analytic strategies to provide defined sulfated and anomerically modified GAG oligosaccharides of the HA type. Representative studies of protein/GAG interactions by (bio)chemical and biophysical methods are reported yielding novel insights into GAG-protein binding. Finally, the biological conclusions and in vivo applications of defined sulfated GAG oligosaccharides will be discussed.


2020 ◽  
Vol 92 (7) ◽  
pp. 1047-1056
Author(s):  
Ekaterina D. Kazakova ◽  
Dmitry V. Yashunsky ◽  
Elena A. Khatuntseva ◽  
Nikolay E. Nifantiev

Abstract2-Amino-2-deoxy-pyranosyl units are important structural components of cell-wall polymers in prokaryotes, fungi and mammals. With respect to the need for development of novel and efficient vaccines and tools for serodiagnosis of infectious diseases, of particular interest are the oligosaccharide cell-wall antigens of pathogenic bacteria and fungi, which comprise 2-amino-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-galactopyranose units as α- or β-anomers. Synthesis of N-acylated α-GlcN and α-GalN containing oligosaccharides is a special challenge due to the presence of a participating group at C2 which favors the formation of β- rather than α-glycoside bond. Herein we overview the efficient two-step approach for preparation of 1,2-cis-glycosides of 2-amino-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-galactopyranose, which was recently developed in our laboratory. In the first step, an efficient and straightforward azidophenylselenylation procedure of glycals gives phenyl 2-azido-2-deoxy-1-selenoglycosides as versatile glycosyl donors. In the second step, these donors can be efficiently transformed into α- or β-glycosides depending on the choice of the solvent. In acetonitrile, total β-stereocontrol was achieved, and the use of diethyl ether as a solvent favouring α-stereoselectivity of glycosylations with phenyl 2-azido-2-deoxy-1-selenoglycosides. Besides, it was shown, that low reactivity and nucleophilicity of glycosyl acceptors which are glycosylated with phenyl 2-azido-2-deoxy-1-selenogalactosides facilitated the formation of α-GalN derivatives. To date, homogenous azidophenylselenylation of glycals and glycosylation with phenyl 2-azido-2-deoxy-1-seleno-α-D-glycopyranosides can be regarded as most useful tool for introduction of 2-amino-2-deoxy-D-glycopyranoside residues into complex synthetic oligosaccharides.


2020 ◽  
Vol 97 (1) ◽  
pp. 72-82
Author(s):  
A. E. Zaitsev ◽  
E. A. Kurbatova ◽  
N. B. Egorova ◽  
E. V. Sukhova ◽  
N. E. Nifantiev

The introduction of pneumococcal vaccines into national immunization programmes around the world has reduced the incidence of pneumococcal vaccine serotypes, but had no influence on the incidence of Streptococcus pneumoniae serotype 3 included in their composition. The results of evaluation of epidemiological efficacy and immunogenicity of capsular polysaccharide of S. pneumoniae serotype 3 capsular polysaccharide (CP) in conjugated and polysaccharide pneumococcal vaccines are contradictory. Some studies have shown the effectiveness of vaccination, other studies indicate insufficient immunogenicity and prophylactic efficacy of S. pneumoniae serotype 3 CP. The authors’ analysis of the results of clinical studies showed that the prophylactic efficacy of S. pneumoniae serotype 3 CP depends on the type of vaccine, nosological form of the disease, age, immunization schedule. According to the literature data, the most informative parameter of the protective activity of S. pneumoniae CP in pneumococcal vaccines, including serotype 3, is opsonophagocytosis. The experimental data of the low immunogenicity of serotype 3 CP, presumably associated with an unusual way of synthesis of its CP, are considered. To increase the im muno genicity of S. pneumoniae serotype 3 CP, the use of synthetic oligosaccharides of a strictly defined chemical structure corresponding to the protective fragments of serotype 3 CP and conjugated with a carrier protein for induction of T-dependent immune response and immunological memory is promising.


2020 ◽  
Author(s):  
Conor Crawford ◽  
Stefan Oscarson

<p>Whilst carrying out palladium catalysed hydrogenolysis to deprotect synthetic oligosaccharides, saturation of the benzyl and naphthylmethyl ether groups to their corresponding ether was observed. In order to suppress this unwanted hydrogenation, we report a scalable practical approach using a catalyst pre-treatment strategy, which is effective under batch or continuous flow conditions. This suppressed the unwanted hydrogenation side-products and created a selective catalyst for hydrogenolysis of benzyl and naphthylmethyl ethers. We demonstrate the efficient deprotection of a set of structurally diverse oligosaccharides (5 examples, >73%).</p>


2020 ◽  
Author(s):  
Conor Crawford ◽  
Stefan Oscarson

<p>Whilst carrying out palladium catalysed hydrogenolysis to deprotect synthetic oligosaccharides, saturation of the benzyl and naphthylmethyl ether groups to their corresponding ether was observed. In order to suppress this unwanted hydrogenation, we report a scalable practical approach using a catalyst pre-treatment strategy, which is effective under batch or continuous flow conditions. This suppressed the unwanted hydrogenation side-products and created a selective catalyst for hydrogenolysis of benzyl and naphthylmethyl ethers. We demonstrate the efficient deprotection of a set of structurally diverse oligosaccharides (5 examples, >73%).</p>


2020 ◽  
Author(s):  
Conor Crawford ◽  
Stefan Oscarson

<p>Whilst carrying out palladium catalysed hydrogenolysis to deprotect synthetic oligosaccharides, saturation of the benzyl and naphthylmethyl ether groups to their corresponding ether was observed. In order to suppress this unwanted hydrogenation, we report a scalable practical approach using a catalyst pre-treatment strategy, which is effective under batch or continuous flow conditions. This suppressed the unwanted hydrogenation side-products and created a selective catalyst for hydrogenolysis of benzyl and naphthylmethyl ethers. We demonstrate the efficient deprotection of a set of structurally diverse oligosaccharides (5 examples, >73%).</p>


Author(s):  
A. E. Zaitsev ◽  
E. A. Kurbatova ◽  
N. B. Egorova ◽  
E. V. Sukhova ◽  
N. E. Nifantiev

The introduction of pneumococcal vaccines into national immunization programmes around the world has reduced the incidence of pneumococcal vaccine serotypes, but had no influence on the incidence of Streptococcus pneumoniae serotype 3 included in their composition. The results of evaluation of epidemiological efficacy and immunogenicity of capsular polysaccharide of S. pneumoniae serotype 3 capsular polysaccharide (CP) in conjugated and polysaccharide pneumococcal vaccines are contradictory. Some studies have shown the effectiveness of vaccination, other studies indicate insufficient immunogenicity and prophylactic efficacy of S. pneumoniae serotype 3 CP. The authors’ analysis of the results of clinical studies showed that the prophylactic efficacy of S. pneumoniae serotype 3 CP depends on the type of vaccine, nosological form of the disease, age, immunization schedule. According to the literature data, the most informative parameter of the protective activity of S. pneumoniae CP in pneumococcal vaccines, including serotype 3, is opsonophagocytosis. The experimental data of the low immunogenicity of serotype 3 CP, presumably associated with an unusual way of synthesis of its CP, are considered. To increase the im muno genicity of S. pneumoniae serotype 3 CP, the use of synthetic oligosaccharides of a strictly defined chemical structure corresponding to the protective fragments of serotype 3 CP and conjugated with a carrier protein for induction of T-dependent immune response and immunological memory is promising.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sarah Sze Wah Wong ◽  
Vadim B. Krylov ◽  
Dmitry A. Argunov ◽  
Alexander A. Karelin ◽  
Jean-Phillipe Bouchara ◽  
...  

ABSTRACT Methodologies to identify epitopes or ligands of the fungal cell wall polysaccharides influencing the immune response of human pathogens have to date been imperfect. Using the galactomannan (GM) of Aspergillus fumigatus as a model, we have shown that synthetic oligosaccharides of distinct structures representing key fragments of cell wall polysaccharides are the most precise tools to study the serological and immunomodulatory properties of a fungal polysaccharide.


Sign in / Sign up

Export Citation Format

Share Document