scholarly journals FUNCTIONAL CHARACTERISTICS OF PEYER'S PATCH LYMPHOID CELLS

1974 ◽  
Vol 139 (2) ◽  
pp. 398-406 ◽  
Author(s):  
Martin F. Kagnoff ◽  
Stephen Campbell

Peyer's patches from normal mice contain antigen-sensitive B and T cells, but lack the accessory adherent cell type(s) required both for the induction of humoral immune responses and for the induction of allograft reactions against cell surface alloantigens. Immune responsiveness can be restored to cultures of Peyer's patch cells by the addition of either APEC or ME. Peyer's patch B cells can be specifically induced by antigen to synthesize humoral antibody. Peyer's patch T cells can cooperate in B-cell induction and can be induced to mediate an allograft reaction against an allogeneic stimulus. Peyer's patch lymphoid aggregates appear to be a storehouse of antigen-sensitive cells sequestered in such a way as to lack an accessory cell type or factor required for induction,

2000 ◽  
Vol 165 (9) ◽  
pp. 5315-5321 ◽  
Author(s):  
Satoru Nagata ◽  
Catriona McKenzie ◽  
Sylvia L. F. Pender ◽  
Mona Bajaj-Elliott ◽  
Peter D. Fairclough ◽  
...  

1974 ◽  
Vol 139 (2) ◽  
pp. 407-413 ◽  
Author(s):  
Martin F. Kagnoff ◽  
Paul Billings ◽  
Melvin Cohn

This study shows that LPS is not mitogenic in cultures containing B cells, or B cells and accessory adherent cells or ME, unless T cells are present. This observation rules out models of induction of antibody synthesis in which it is assumed that the delivery of a mitogenic signal by the interaction of LPS with the membrane of the B cell is in itself sufficient for B-cell induction (19). Further, it makes unlikely the proposed extrapolation of such a model to other so-called thymus-independent antigens, e.g., PVP, levan, dextran, and SIII (19). The mitogenic action of LPS appears to be due to its ability to complete an inductive stimulus to B cells (13). We interpret the observed thymus dependence of the B-cell response to LPS in light of a model in which two signals are obligatory for B-cell induction (14). The first signal in the inductive pathway is delivered to the antigen-sensitive cell via a conformational change in the receptor upon interaction with antigen. The second signal is delivered via the thymus-derived cooperating system. Since LPS can induce immune responses to both immunogenic and nonimmunogenic ligands (9–13) we envision that one signal is delivered to the B cell via specific binding of the ligand to the B-cell antigen receptor, while a second signal is delivered as a result of T-cell cooperation via membrane-bound LPS. This has been termed abnormal induction (20). In this example LPS is the foreign membrane-bound determinant in question although histocompatibility antigens (21, 22), viral determinants, or surface bound lectins could act similarly. In light of the above model, one observation should be pointed out. LPS inhibits the induction of a SRBC response in normal Peyer's patch cells to which adherent cells or ME is added. This inhibition appears to be a T-cell-mediated effect because it is abolished by partial depletion of the T-cell population by antitheta treatment. Since the induction of IgM producing PFC is being measured, the T-cell-dependent LPS inhibition could act either (a) by induction of T-cell "suppression" (23, 24) of the normal cooperating system required for a SRBC response, or (b) by the induction of such high levels of cooperating function (13) as to be inhibitory to a SRBC IgM response. Our observations contrast sharply with prior reports which describe LPS as a thymus-independent antigen (2–4) and a B-cell mitogen (5–8) capable of stimulating immune responses in the absence of T-cell cooperation (2–12). This demonstration of the thymus dependence of LPS stimulation has been possible because Peyer's patches from congenitally athymic (nude) mice are functionally a highly purified B-cell population devoid of T cells and accessory adherent cells. In this respect, earlier studies relied on nude spleen cultures and spleen cultures from thymectomized, lethally irradiated, and bone marrow-reconstituted mice (3, 4, 6–13). These spleen cultures which contain B cells and accessory adherent cells are recognized to be deficient but not devoid of the thymus-derived contribution to the inductive stimulus (12, 13). It could be argued that the presence of T cells and adherent cells is in fact required for the antigen-specific effect and not for the LPS effect. However, this is unlikely since our experiments show that LPS is not directly mitogenic for B cells and does not stimulate background anti-SRBC PFC. It seems unlikely that Peyer's patch antigen-sensitive cells differ from antigen-sensitive cells in the spleen in their mechanism of induction. We have shown that Peyer's patch B cells can be specifically induced by antigen, and Peyer's patch T cells mediate cooperating and killer functions. Alternately, the possibility that Peyer's patch B cells were not stimulated by LPS as a result of prior cryptic exposure to LPS (13) in the intestinal tract was excluded since cultures containing B cells, T cells, and adherent cells or ME were stimulated to DNA synthesis by LPS. The reason that certain antigens appear to be thymus independent may be that their repeating polymeric nature permits inductive interactions at very low levels of thymus-derived cooperation (see reference 20 for quantitative considerations). It has been stated that the inductive properties of all thymus-independent antigens are directly related to their ability to act as B-cell mitogens (19). The observation that LPS is thymus dependent for its B-cell mitogenic activity makes us question the thymus independence of any antigen.


1975 ◽  
Vol 142 (6) ◽  
pp. 1425-1435 ◽  
Author(s):  
M F Kagnoff

Peyer's patch T cells may serve an important role in the interaction of the host with intraluminal gut antigens. Studies presented in this paper demonstrate that T cells in murine Peyer's patches can be carrier primed for helper function in the induction of an antihapten response by feeding antigen. Carrier priming was assessed by measuring the ability of Peyer's patch cells from mice fed heterologous erythrocytes to enhance an antitrinitrophenyl (TNP) response in vitro when added to normal Peyer's patch cells cultured with TNP coupled to the erythrocyte used for feeding. Priming of T helper cells in Peyer's patches was antigen specific and occurred when erythrocytes were administered orally but not when erythrocytes were injected intravenously or intraperitoneally. Murine Peyer's patches are naturally deficient in a cooperating accessory adherent cell type(s) required for B-cell induction to humoral antibody synthesis in vitro and antigen feeding does not result in significant induction of Peyer's patch B cells to humoral antibody synthesis in vivo. Since Peyer's patch T cells can be carrier-antigen primed for helper function in the absence of B-cell induction to humoral antibody synthesis, these studies may indicate that T-cell priming is less dependent than B-cell induction on cooperating accessory adherent cells.


2004 ◽  
Vol 200 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Marina N. Fleeton ◽  
Nikhat Contractor ◽  
Francisco Leon ◽  
J. Denise Wetzel ◽  
Terence S. Dermody ◽  
...  

We explored the role of Peyer's patch (PP) dendritic cell (DC) populations in the induction of immune responses to reovirus strain type 1 Lang (T1L). Immunofluorescence staining revealed the presence of T1L structural (σ1) and nonstructural (σNS) proteins in PPs of T1L-infected mice. Cells in the follicle-associated epithelium contained both σ1 and σNS, indicating productive viral replication. In contrast, σ1, but not σNS, was detected in the subepithelial dome (SED) in association with CD11c+/CD8α−/CD11blo DCs, suggesting antigen uptake by these DCs in the absence of infection. Consistent with this possibility, PP DCs purified from infected mice contained σ1, but not σNS, and PP DCs from uninfected mice could not be productively infected in vitro. Furthermore, σ1 protein in the SED was associated with fragmented DNA by terminal deoxy-UTP nick-end labeling staining, activated caspase-3, and the epithelial cell protein cytokeratin, suggesting that DCs capture T1L antigen from infected apoptotic epithelial cells. Finally, PP DCs from infected mice activated T1L-primed CD4+ T cells in vitro. These studies show that CD8α−/CD11blo DCs in the PP SED process T1L antigen from infected apoptotic epithelial cells for presentation to CD4+ T cells, and therefore demonstrate the cross-presentation of virally infected cells by DCs in vivo during a natural viral infection.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Tomohisa Okamura ◽  
Shuji Sumitomo ◽  
Kaoru Morita ◽  
Yukiko Iwasaki ◽  
Mariko Inoue ◽  
...  

1973 ◽  
Vol 137 (3) ◽  
pp. 721-739 ◽  
Author(s):  
Michael Hoffmann ◽  
John W. Kappler

The specificity of antigen recognition by thymus-derived helper cells (T cells) and antibody was examined in mice, heterologous erythrocyte antigens from sheep (SRBC), goat (GRBC), burro (BRBC), chicken (CRBC), and toad (TRBC) being used. Antibody specificity was tested by a number of functional assays: hemagglutination, hemolysis, and immune suppression. The specificity of T cells was determined by titrating their ability to help the in vitro antitrinitrophenol (TNP) responses of mouse spleen cultures immunized with the hapten coupled to the various test erythrocytes as carrier. Anti-SRBC antibody cross-reacted with GRBC, but not with BRBC, CRBC, or TRBC. In contrast, SRBC-primed helper T cells cross-reacted with both GRBC and BRBC, but not with CRBC or TRBC, indicating a difference in the specificity of antigen recognition between the cellular and the humoral immune responses.


Sign in / Sign up

Export Citation Format

Share Document