scholarly journals Ontogeny of mouse lymphocyte function. II. Development of the ability to produce antibody is modulated by T lymphocytes.

1975 ◽  
Vol 141 (1) ◽  
pp. 216-226 ◽  
Author(s):  
D E Mosier ◽  
B M Johnson

The relative functional maturity of neonatal mouse spleen T- and B-cell populations was assessed by comparing the ability to respond to the thymic-independent antigen, DNP-Ficoll, or thymic-dependent SRBC by producing antibody in vitro. Although mouse spleen cells responded to DNP-Ficoll at an earlier age than they responded to SRBC or TNP-SRBC, the reason for the lag in the T-dependent response was confounded by the finding of high numbers of suppressor T lymphocytes in the neonatal spleen. Thus, small numbers of neonatal spleen T cells or thymocytes significantly decreased the in vitro antibody response of adult spleen cells. Although B lymphocytes appear to be functionally mature soon after birth, their acitivity may be modulated by an excess of suppressor T cells; e.g., the reconstitution of helper cell function in the neonatal spleen required anti-theta treatment before addition of adult helper cells. Suppressive activity attributable to T cells seems to play a dominant role in determining the ability of the neonatal animal to react positively or negatively to antigenic stimulation.

1982 ◽  
Vol 156 (3) ◽  
pp. 918-923 ◽  
Author(s):  
M S Sy ◽  
S H Lee ◽  
M Tsurufuji ◽  
K L Rock ◽  
B Benacerraf ◽  
...  

Treatment of responder cells with monoclonal anti-Ly-1,2 antibodies plus complement in vitro completely eliminated their ability to generate azobenzenearsonate (ABA)-specific cytolytic T lymphocytes (CTL). However, addition of the concanavalin A-stimulated supernatants of rat spleen cells (Con A-Sup) can fully reconstitute the response. Therefore, Lyt-1,2-bearing T cells are required for the generation of ABA-specific CTL, and such requirement can be replaced by factors present in the Con A- sup. Suppressor T cells (Ts), when adoptively transferred into naive recipients, will inhibit the in vivo priming of CTL. This inhibition can also be reversed by in vitro addition of Con A-Sup. furthermore, mice serving as donors of Ts also show profound unresponsiveness when primed and restimulated in vitro. In contrast to the Ts-mediated inhibition, in vitro addition of Con A-Sup was unable to abolish the unresponsiveness observed in these cultures. Thus, we identified two unresponsive states in a hapten-specific killing system that differ in their ability to be reconstituted by Con A-Sup.


1977 ◽  
Vol 146 (1) ◽  
pp. 91-106 ◽  
Author(s):  
T Hamaoka ◽  
M Yoshizawa ◽  
H Yamamoto ◽  
M Kuroki ◽  
M Kitagawa

An experimental condition was established in vivo for selectively eliminating hapten-reactive suppressor T-cell activity generated in mice primed with a para-azobenzoate (PAB)-mouse gamma globulin (MGG)-conjugate and treated with PAB-nonimmunogenic copolymer of D-amino acids (D- glutamic acid and D-lysine; D-GL). The elimination of suppressor T-cell activity with PAB-D-GL treatment from the mixed populations of hapten- reactive suppressor and helper T cells substantially increased apparent helper T-cell activity. Moreover, the inhibition of PAB-reactive suppressor T-cell generation by the pretreatment with PAB-D-GL before the PAB-MGG-priming increased the development of PAB-reactive helper T-cell activity. The analysis of hapten-specificity of helper T cells revealed that the reactivity of helper cells developed in the absence of suppressor T cells was more specific for primed PAB-determinants and their cross-reactivities to structurally related determinants such as meta-azobenzoate (MAB) significantly decreased, as compared with the helper T-cell population developed in the presence of suppressor T lymphocytes. In addition, those helper T cells generated in the absence of suppressor T cells were highly susceptible to tolerogenesis by PAB-D- GL. Similarly, the elimination of suppressor T lymphocytes also enhanced helper T-cell activity in a polyclonal fashion in the T-T cell interactions between benzylpenicilloyl (BPO)-reactive T cells and PAB- reactive T cells after immunization of mice with BPO-MGG-PAB. Thus inhibition of BPO-reactive suppressor T-cell development by the BPO-v-GL- pretreatment resulted in augmented generation of PAB-reactive helper T cells with higher susceptibility of tolerogenesis to PAB-D-GL. Thus, these results support the notion that suppressor T cells eventually suppress helper T-cell activity and indicate that the function of suppressor T cells related to helper T-cell development is to inhibit the increase in the specificity and apparent affinity of helper T cells in the primary immune response. The hapten-reactive suppressor and helper T lymphocytes are considered as a model system of T cells that regulate the immune response, and the potential applicability of this system to manipulating various T cell-mediated immune responses is discussed in this context.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 844-850 ◽  
Author(s):  
RP Witherspoon ◽  
LG Lum ◽  
R Storb ◽  
ED Thomas

Abstract Immunoglobulin secretion was studied in 37 patients between 19 and 106 days after allogeneic HLA-identical (30 patients), allogeneic one HLA- haplotype-identical (three patients), syngeneic (three patients), or autologous (one patient) marrow grafting. E rosette-positive (T) and E rosette-negative (non-T) peripheral blood mononuclear cells were cocultured with pokeweed mitogen for 6 days. Polyvalent immunoglobulin secretion was determined by counting plaque forming cells in a reverse hemolytic plaque assay. The number of antibody secreting cells in cocultures of autologous T and non-T lymphocytes was low in 40 of 44 tests conducted on samples from the 37 patients. Mononuclear or non-T cells from 38 of 40 tests failed to produce antibody when cultured with normal helper T cells. T cells from 23 of 37 tests failed to help normal non-T cells secrete antibody. T lymphocytes from 23 of 41 tests suppressed antibody production greater than 80% by normal T and non-T cells. The suppressor cells were radiosensitive in 17 of the 25 tests. The abnormal function of lymphocyte subpopulations in patients during the first 3 mo after syngeneic, allogeneic or autologous marrow grafting was similar regardless of the type of graft or the presence of acute graft versus host disease.


1981 ◽  
Vol 154 (1) ◽  
pp. 35-47 ◽  
Author(s):  
CM Sorensen ◽  
CW Pierce

C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products.


1978 ◽  
Vol 148 (5) ◽  
pp. 1271-1281 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp

Virgin spleen cells develop comparable primary antibody responses in vitro to syngeneic or allogeneic macrophages (Mphi) bearing the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), whereas immune spleen cells primed with syngeneic or allogeneic GAT-Mphi develop secondary responses preferentially when stimulated with GAT-Mphi syngeneic to the GAT-Mphi used for priming in vivo. These restrictions are mediated by products of the I-A subregion of the H-2 complex and are operative at the level of the GAT-Mphi-immune helper T-cell interactions. To investigate why these immune spleen cells fail to develop a significant antibody response to GAT-Mphi other than those used for in vivo immunization and determine the mechanism by which the restriction is maintained, spleen cells from virgin and syngeneic or allogeneic GAT-Mphi-primed mice were co-cultured in the presence of GAT-Mphi of various haplotypes. Antibody responses to GAT developed only in the presence of GAT-Mphi syngeneic to the Mphi used for in vivo priming; responses in cultures with GAT-Mphi allogeneic to the priming Mphi, whether these Mphi were syngeneic or allogeneic with respect to the responding spleen cells, were suppressed. The suppression was mediated by GAT-specific radiosensitive T cells. Thus, development of GAT-specific suppressor T cells appears to be a natural consequence of the immune response to GAT in responder as well as nonresponder mice. The implications of stimulation of genetically restricted immune helper T cells, and antigen-specific, but unrestricted, suppressor T cells after immunization with GAT-Mphi in vivo are discussed in the context of regulatory mechanisms in antibody responses.


1976 ◽  
Vol 143 (5) ◽  
pp. 1199-1210 ◽  
Author(s):  
H Tse ◽  
R W Dutton

A 5-20% Ficoll velocity sedimentation gradient has been successfully applied to separate concanavalin A (Con A)-induced helper; and suppressor T cells. When titrated into a constant number of fresh normal spleen cells responding to sheep erythrocytes, cells from the top pool show stimulatory effects while those from the bottom pool show inhibitory activity. Both activities are found to be Con A dependent and anti-theta sensitive. We conclude that Con A-induced helper and suppressor T cells are distinct subpopulations and such separation will allow further characterization of these cell types.


1978 ◽  
Vol 148 (5) ◽  
pp. 1282-1291 ◽  
Author(s):  
CW Pierce ◽  
JA Kapp

The ability of spleen cells from (responder X nonresponder)F(1) mice immunized with various GAT-Mφ, GAT-MBSA, and soluble GAT to develop IgG GAT-specific PFC responses in vitro after stimulation with responder and nonresponder parental and F(1) GAT-Mφ, was investigated. F(1) spleen cells from mice immunized with F(1) GAT-Mφ or GAT-MBSA developed secondary responses to responder and nonresponder parental and F(1) GAT- Mφ, but not to unrelated third party GAT-Mφ. Spleen cells from F(1) mice immunized with either parental GAT-Mφ developed secondary responses to F(1) GAT-Mφ and only the parental GAT-Mφ used for immunization in vivo. Soluble GAT-primed F(1) spleen cells responded to F(1) and responder parental, but not nonresponder parental, GAT-Mφ. Simultaneous immunization in vivo with the various GAT-Mφ or GAT-MBSA plus soluble GAT modulated the response pattern of these F(1) spleen cells such that they developed secondary responses only to F(1) and parental responder GAT-Mφ regardless of the response pattern observed after immunization with the various GAT-Mφ or GAT-MBSA alone. These observations demonstrate the critical importance of the physical state of the GAT used for immunization in determining the subsequent response pattern of immune F(1) spleen cells to the parental and F(1) GAT-Mφ. Further, suppressor T cells, capable of inhibiting primary responses to GAT by virgin F(1) spleen cells stimulated by nonresponder parental GAT-Mφ, were demonstrated in spleens of F(1) mice immunized with soluble GAT, but not those primed with F(1) GAT-Mφ. Because responder parental mice develop both helper and suppressor T cells after immunization with GAT-Mφ, and soluble GAT preferentially stimulates suppressor T cells whereas GAT-Mφ stimulate helper T cells in nonresponder parental mice, these observations suggest that distinct subsets of T cells exist in F(1) mice which behave phenotypically as responder and nonresponder parental T cells after immunization with soluble GAT and GAT- Mφ.


Sign in / Sign up

Export Citation Format

Share Document