scholarly journals Cell-mediated lympholysis of N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-beta-anaylglycylglycyl-modified autologous lymphocytes. Effector cell specificity to modified cell surface components controlled by the H-2K and H-2D serological regions of the murine major histocompatibility complex.

1976 ◽  
Vol 143 (1) ◽  
pp. 127-142 ◽  
Author(s):  
T G Rehn ◽  
G M Shearer ◽  
H S Koren ◽  
J K Inman

Splenic lymphocytes from four C57BL/10 congenic mouse strains were sensitized in vitro to N(-3-nitro-4-hydroxy-5-iodophenylacetyl)-beta-alanylglycylglycyl-(N) modified autologous lymphocytes. The effector cells generated after 5 days of culture were assayed on a series of either N-modified phytohemagglutinin-stimulated spleen cells or N-modified tumor cells. The results indicated in all cases that both N modification of the targets and H-2 homology between the modified stimulating and target cells are required for lysis to occur. In each case the effector cells were found to lyse N-modified target cells only when there was homology at either or both ends of the major histocompatibility complex (MHC) between the stimulator and target cells. B10.BR lysed targets sharing alleles at K (or K plus I-A) and/or at D. B10.A effector cell specificity was mapped to K (or K plus I-A) and/or the D half of the MHC (D or D plus I-C and/or S). The two regions of specificity determined for B10.D2 effector cells were D (or D plus S plus I-C) and a region not including D of the MHC. C57BL/10 effector cells lysed N-modified targets only if there was target cell H-2 homology at K, I-A, and I-B or at the D serological region. As in the trinitrophenyl (TNP) system (6) B10.BR and B10.A effector cells lysed targets sharing K end H-2 serological regions greater than target cells sharing D-end serological regions. The C57BL/10 effector cells were shown to react to the K end greater than the D end, which differed from the equal reactivity seen in the TNP system for this strain. The data are consistent with the hypothesis that the antigen recognized by the effector cell includes an altered H-2 serological cell surface product. That the reaction is not "hapten specific" and the H-2 homology is required only for effector:target cell interaction was excluded by the use of two F1 combinations in which lysis of only N-modified target cells sharing the H-2 haplotype with the stimulating parental strain was obtained. Finally, it was demonstrated that N and TNP modification create distinct new antigenic determinants, since an effector cell sensitized to one modifying agent will lyse only H-2 matched target modified with that same modifying agent.

1975 ◽  
Vol 141 (6) ◽  
pp. 1348-1364 ◽  
Author(s):  
G M Shearer ◽  
T G Rehn ◽  
C A Garbarino

Splenic lymphocytes from four C57BL/10 congenic resistant mouse strains were sensitized in vitro with trinitrophenyl (TNP)-modified autologous spleen cellsmthe effector cells generated were incubated with 51-Cr-labeled unmodified or TNP-modified spleen or tumor target cells, and the percentage of specific lympholysis determined. The results obtained using syngeneic-, congenic-, recombinante, and allogeneic-modified target cells indicated that TNP modification of the target cells was a necessary but insufficient requirement for lympholysis. Intra-H-2 homology either between modified stimulating cells and modified target cells or between responding lymphocytes and modified target cells was also important in the specificity for lysis. Homology at the K serological region or at K plus I-A in the B10.A and B10BR strains, and at either the D serological region or at some other region (possibly K) in the B10.D2 and C57BL/10 strains were shown to be necessary in order to detect lympholysis. Experiments using (B10itimes C57BL/10)F1 responding lymphocytes sensitized and assayed with TNP-modified parental cells indicated that the homology required for lympholysis was between modified stimulating and modified target cellsmthe possibility is raised that histocompatibility antigens may serve in the autologous system as cell surface components which are modified by viruses or autoimmune complexes to form cell-bound modified-self antigens, which are particularly suited for cell-mediated immune reactions. Evidence is presented suggesting that H-2-linked Ir genes are expressed in the TNP-modified autologous cytotoxic system. These findings imply that the major histocompatibility complex can be functionally involved both in the response potential to and in the formation of new antigenic determinants involving modified-self components.


1975 ◽  
Vol 142 (6) ◽  
pp. 1349-1364 ◽  
Author(s):  
M J Bevan

Cytotoxic cells were generated by immunizing one strain of mouse with cells from an allogeneic strain which carries the same H-2 region. The effector cells assayed in a 4 h 51Cr release assay were shown to be T cells and indistinguishable, except in specificity, from cytotoxic T cells directed at H-2 alloantigens. Although the genetic differences between responder and stimulator cells responsible for the immunization did not code in H-2, the H-2 complex did restrict susceptibility of target cells. For example, BALB.B cytotoxic cells (H-2b) immunized against and capable of lysing C57BL/6 cells (H-2b) would not lyse B6.C/H-2d target cells. C57BL/6 and B6.C/H-2d are congenic and differ in the H-2 region. Two hypotheses are considered to explain the H-2 restriction of susceptibility to cytotoxic T cells generated by an H-2 identical alloimmunization. (a) The dual (self) recognition hypothesis states that the cytotoxic cell has two recognition units, one for H-2-coded structures and another clonally restricted receptor for the minor alloantigen. (b) The interaction antigen hypothesis states that all the surface alloantigenic determinants recognized by cytotoxic T cells are the result of interaction between H-2- and non-H-2-coded gene products. Two lines of evidence, one with F1 effector cells and the other a cold target competition experiment, are presented which argue strongly in favor of the interaction antigen hypothesis. The regions of H-2 required to be histocompatible were mapped to the D region and to the left of IC, probably the K region. These results, and recent work on the response to virus-infected and TNP-modified syngeneic cells, suggest that cytotoxic cells are restricted in specificity to preferentially recognizing alterations in structures that are coded in the major histocompatibility complex.


1973 ◽  
Vol 138 (6) ◽  
pp. 1289-1304 ◽  
Author(s):  
David H. Sachs ◽  
James L. Cone

Antibodies cytotoxic for only a subpopulation of C57Bl/10 lymph node and spleen cells were detected when rat antiserum against B10.D2 was exhaustively absorbed with B10.A lymphocytes. Antibodies of similar specificity were also detected in B10.A anti-B10.D2 and in B10.A anti-C57Bl/10 alloantisera. Reactions with recombinant strains of mice indicate that the cell-surface antigen(s) responsible for this specificity is determined by gene(s) in or to the left of the Ir-1 region of the major histocompatibility complex. A variety of criteria implicate B cells as the subpopulation of lymphocytes bearing this antigen. In view of these data and the recent report by others of a T-cell alloantigen determined by gene(s) in the major histocompatibility complex, it seems possible that there may be a variety of H-2-linked alloantigens expressed preferentially on subclasses of lymphocytes.


1983 ◽  
Vol 158 (4) ◽  
pp. 1178-1190 ◽  
Author(s):  
Y Asano ◽  
R J Hodes

The present studies have identified cloned Lyt-1+2- T suppressor (Ts) cells that are both antigen specific and major histocompatibility complex (MHC) restricted in their activation requirements and that function to regulate the MHC-restricted activation of B cells by T helper (Th) cells. ParentA-restricted Ts clones suppressed, in antigen-specific fashion, the responses generated by (A X B)F1 Th cells cooperating with parentA (B plus accessory) cells, but did not suppress responses by the same (A X B)F1 Th cell population cooperating with parentB (B plus accessory) cells. Moreover, responses of (A X B)F1 leads to parentA Th cells and (A X B)F1 (B plus accessory) cells were suppressed by parentA-restricted Ts clones but not by parentB-restricted Ts clones. Thus, these findings suggest that the cloned Ts cells that have been characterized here function by specifically inhibiting the MHC-restricted interaction between Th cells and B and/or accessory cells. It was further demonstrated in experiments using cloned Th and Ts populations that these Lyt-1+2-Ts cells act not simply as inducers of suppressor but rather function in a restricted fashion as effector cells in the suppressor pathway.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


Sign in / Sign up

Export Citation Format

Share Document