scholarly journals IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, beta-hexosaminidase, and histamine from cultured bone marrow-derived mouse mast cells.

1983 ◽  
Vol 157 (1) ◽  
pp. 189-201 ◽  
Author(s):  
E Razin ◽  
J M Mencia-Huerta ◽  
R L Stevens ◽  
R A Lewis ◽  
F T Liu ◽  
...  

Mouse bone marrow-derived mast cells differentiated in vitro and sensitized with monoclonal IgE respond to antigen-initiated activation with the release of histamine, beta-hexosaminidase, chondroitin sulfate E proteoglycan, and leukotriene C4 (LTC4). The chondroitin sulfate E nature of the glycosaminoglycan side chain was established by demonstrating that the chondroitinase ABC disaccharide digestion products were composed of equal quantities of 4-sulfated and 4,6-disulfated N-acetyl-galactosamine. The single immunoreactive sulfidopeptide leukotriene, released and quantitated with a class-specific antibody, was identified as LTC4 by its retention time on reverse-phase high-performance liquid chromatography and by its specific spasmogenic activity on the guinea pig ileum. The release of the preformed mediators, as well as of LTC4, was related in a dose-response fashion to the concentration of monoclonal IgE used during the sensitization step and to the concentration of specific antigen used to initiate the activation-secretion response. The optimal concentrations of IgE for sensitization and of antigen for challenge were the same for the release of preformed mediators and of LTC4. In addition, the time courses of their release were superimposable, with a plateau at 5 min after antigen challenge. The release of three preformed mediators and of LTC4 after fixation of IgE, washing of the sensitized cells, and antigen challenge unequivocally indicates a bone marrow-derived mast cell origin for these products. Linear regression analyses of the net percent release of beta-hexosaminidase to histamine and of 35S-chondroitin sulfate E to beta-hexosaminidase yielded straight lines that intersected at the origin, which indicates that the three preformed mediators are localized in the secretory granules of the bone marrow-derived mast cells. The concomitant generation of 23 ng of LTC4/10(6) sensitized bone marrow-derived mast cells represents the first example of IgE-dependent release of substantial amounts of LTC4, a component of slow reacting substance of anaphylaxis, from a mast cell population of greater than 95% purity. The IgE-dependent generation of LTC4, rather than prostaglandin D2, by the chondroitin sulfate E proteoglycan-containing bone marrow-derived mast cells contrasts with the predominant generation of prostaglandin D2 by heparin proteoglycan-containing mast cells. These differences together support the existence of two phenotypically different mast cell subclasses.

Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1453-1459 ◽  
Author(s):  
Y Hojima ◽  
CG Cochrane ◽  
RC Wiggins ◽  
KF Austen ◽  
RL Stevens

Abstract A large number of negatively charged macromolecules, including DNA, glycosaminoglycans, and proteoglycans, were tested as possible activators of the contact (Hageman factor) system in vitro. Activation was assessed by conversion of prekallikrein to kallikrein, as determined by amidolytic assay and by cleavage of 125I-Hageman factor into 52,000- and 28,000-dalton fragments. Of particular interest to these studies, heparin proteoglycan and glycosaminoglycan from rat peritoneal mast cells, and squid chondroitin sulfate E, which is representative of the glycosaminoglycan from cultured mouse bone marrow derived mast cells, induced the reciprocal activation between Hageman factor and prekallikrein. In addition, naturally occurring heparin glycosaminoglycans from pig mucosa, bovine lung, and rat mast cells also induced activation. In contrast, native connective tissue matrix glycosaminoglycans and proteoglycans from several sources were inactive, although when one such chondroitin sulfate was further sulfated in vitro, it gained activity. When the negative charge of the activating agents was blocked by the addition of hexadimethrine bromide, the cleavage of 125I-Hageman factor in the presence of prekallikrein was prevented. The active negatively charged macromolecules induced cleavage of 125I-high molecular weight kininogen in normal plasma but not in Hageman factor-deficient or prekallikrein- deficient plasmas. Reconstitution of prekallikrein-deficient plasma with purified prekallikrein restored the kininogen cleavage upon addition of the active proteoglycans. These results suggest that both heparin from connective tissue mast cells and highly sulfated chondroitin sulfate E from cultured mouse bone marrow derived mast cells (which are considered synonomous with mucosal mast cells) could activate the contact system of plasma subsequent to an activation secretion response.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1453-1459 ◽  
Author(s):  
Y Hojima ◽  
CG Cochrane ◽  
RC Wiggins ◽  
KF Austen ◽  
RL Stevens

A large number of negatively charged macromolecules, including DNA, glycosaminoglycans, and proteoglycans, were tested as possible activators of the contact (Hageman factor) system in vitro. Activation was assessed by conversion of prekallikrein to kallikrein, as determined by amidolytic assay and by cleavage of 125I-Hageman factor into 52,000- and 28,000-dalton fragments. Of particular interest to these studies, heparin proteoglycan and glycosaminoglycan from rat peritoneal mast cells, and squid chondroitin sulfate E, which is representative of the glycosaminoglycan from cultured mouse bone marrow derived mast cells, induced the reciprocal activation between Hageman factor and prekallikrein. In addition, naturally occurring heparin glycosaminoglycans from pig mucosa, bovine lung, and rat mast cells also induced activation. In contrast, native connective tissue matrix glycosaminoglycans and proteoglycans from several sources were inactive, although when one such chondroitin sulfate was further sulfated in vitro, it gained activity. When the negative charge of the activating agents was blocked by the addition of hexadimethrine bromide, the cleavage of 125I-Hageman factor in the presence of prekallikrein was prevented. The active negatively charged macromolecules induced cleavage of 125I-high molecular weight kininogen in normal plasma but not in Hageman factor-deficient or prekallikrein- deficient plasmas. Reconstitution of prekallikrein-deficient plasma with purified prekallikrein restored the kininogen cleavage upon addition of the active proteoglycans. These results suggest that both heparin from connective tissue mast cells and highly sulfated chondroitin sulfate E from cultured mouse bone marrow derived mast cells (which are considered synonomous with mucosal mast cells) could activate the contact system of plasma subsequent to an activation secretion response.


1989 ◽  
Vol 77 (3) ◽  
pp. 297-304 ◽  
Author(s):  
F. J. Van Overveld ◽  
L. A. M. J. Houben ◽  
F. E. M. Schmitz du Moulin ◽  
P. L. B. Bruijnzeel ◽  
J. A. M. Raaijmakers ◽  
...  

1. In this study mast cells were found to comprise 2.1% of total cells recovered by enzymatic digestion of human lung tissue. 2. This mast cell population consisted of 79% formalin-sensitive, Alcian Blue-positive mast cells and 21% formalin-insensitive, Alcian Blue-positive mast cells. 3. By the use of centrifugal elutriation and subsequent Percoll gradient centrifugation, separate mixed cell populations could be obtained in which the mast cell constituents were either of the formalin-sensitive or -insensitive type. 4. Cell suspensions in which formalin-sensitive cells comprised 97% of mast cells contained approximately 1.34 pg of histamine per mast cell, whereas in preparations in which mast cells were 84% formalin-resistant the histamine content was approximately 4.17 pg of histamine per mast cell. 5. The histamine release upon anti-immunoglobulin E challenge of formalin-sensitive mast cells was greater than the release by formalin-insensitive mast cells. 6. After challenge with opsonized zymosan, only formalin-sensitive mast cells were able to release histamine. 7. Leukotriene C4 release was observed when formalin-sensitive mast cells were challenged with antiimmunoglobulin E. Formalin-insensitive mast cells showed no release of leukotriene C4. 8. Prostaglandin D2 release was observed when formalin-insensitive mast cells were challenged with antiimmunoglobulin E. Formalin-sensitive mast cells showed no release of prostaglandin D2.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2654-2663 ◽  
Author(s):  
Eleni Gagari ◽  
Mindy Tsai ◽  
Chris S. Lantz ◽  
Lisa G. Fox ◽  
Stephen J. Galli

Abstract Mast cells represent a potential source of interleukin-6 (IL-6) and other cytokines that have been implicated in host defense, tissue maintenance/remodeling, immunoregulation, and many other biologic responses. In acquired immune responses to parasites or allergens, the extensive IgE-dependent activation of mast cells via FcεRI can result in the release of large quantities of biogenic amines that are stored in the cells' cytoplasmic granules as well as the production of lipid mediators and many cytokines; these products together can orchestrate an intense inflammatory response. We now report that activation of mouse mast cells via c-kit, the receptor for the pleiotropic survival/growth factor, stem cell factor (SCF ), can induce the release of IL-6. Upon challenge with SCF, bone marrow-derived cultured mouse mast cells (BMCMCs) released amounts of IL-6 that were greater than 100-fold more than those produced by unstimulated cells, but that were substantially less than those produced in response to IgE and specific antigen. Moreover, BMCMCs released IL-6 upon challenge with concentrations of SCF that resulted in little or no detectable release of tumor necrosis factor-α, leukotriene C4 , histamine, or serotonin. These findings indicate that SCF, a widely expressed protein that is critical for mast cell development and survival, can also regulate the differential release of mast cell mediators.


Immunology ◽  
1998 ◽  
Vol 94 (3) ◽  
pp. 318-324 ◽  
Author(s):  
C. TKACZYK ◽  
M. VIGUIER ◽  
Y. BOUTIN ◽  
P. FRANDJI ◽  
B. DAVID ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1188-1195
Author(s):  
L Gilead ◽  
O Bibi ◽  
E Razin

Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above- mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers. These results demonstrate microenvironmental effects exerted by the MESF and HSF monolayers on IL-3-dependent hBMMCs similar to those reported in the conversion of murine mast cell phenotype.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 290-303 ◽  
Author(s):  
SA Krilis ◽  
SG Warneford ◽  
J Macpherson ◽  
S Kyradji ◽  
L Dalla-Pozza ◽  
...  

Abstract Bone marrow was isolated from a child with congenital mastocytosis. Upon prolonged in vitro culture, initially in the presence of interleukin-3 (IL-3), a population of relatively large fusiform, strongly adherent cells grew out plus a subpopulation of smaller nonadherent cells. The morphology of the adherent cells was not typical of fibroblasts, epithelial cells, nor of standard hematopoietic cell types, whereas the morphology of the nonadherent cells resembled mast cells. Neither cell type required the presence of IL-3 nor a feeder layer of fibroblasts for continued growth. Attempts to isolate the two populations were unsuccessful. This cell strain comprised of both cell populations has been termed human bone marrow-derived mastocytosis cells (HBM-M). These cells were found to possess some of the cytochemical, ultrastructural, and surface phenotypic features of degranulated mast cells. They reacted with the mast cell marker, monoclonal antibody YB5.B8, but not with the basophil specific monoclonal antibody Bsp-1 and released the inflammatory mediators histamine, leukotriene C4, prostaglandin D2, and platelet-activating factor constitutively. This release was not potentiated by immunologic- or nonimmunologic-activating stimuli. In addition, they exhibited cytochemical and surface phenotypic features of monocytes. Our results indicate that a population of abnormal proliferative cells exist in the marrow of this patient; that these cells may be responsible for the patient's pronounced systemic proliferation of mast cells and the associated symptoms; and that the cell's mast cell, monocyte properties may be indicative of a common bone marrow-derived mast cell/monocyte precursor.


Sign in / Sign up

Export Citation Format

Share Document