charged macromolecules
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 15)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Murugappan Muthukumar ◽  
Tapas Singha ◽  
Siao-Fong Li

We investigate the role of active coupling on the transport properties of the macromolecules. The active coupling comes due to bound enzymes with a segment of the macromolecule wherein the enzyme exerts an electrostatic force on the segment of the macromolecule, and eventually, it gets unbound due to the thermal fluctuations. This binding and unbinding process generates active fluctuations in the dynamics of the macromolecule. Starting with segment dynamics and correlations for three dynamical models with active coupling, we obtain the cooperative diffusivity for the realistic charged macromolecules with hydrodynamics. First, we construct the three models by incorporating the features of a real polymer systematically, starting from simple Rouse dynamics with active coupling. We further include segment-segment interactions and in addition, hydrodynamic interactions with active coupling. Our obtained scaling form for segment-segment correlations for the models in terms of the size exponent of the polymer indicating that hydrodynamic and segment-segment interactions along with the active coupling lead to new scaling regimes. We finally study the dynamics of a homogeneously charged flexible polymer in an infinitely dilute solution where enzymes and counterions affect the dynamics of the polymers. We analytically investigate how these active fluctuations affect the coupled dynamics of the polymer and counterions. It turns out that these active fluctuations enhance the effective diffusivity of the polymer. The derived closed-form expression for diffusivity is pertinent to accurate interpretation of light scattering data on multi-component systems with binding-unbinding equilibria.


2021 ◽  
Author(s):  
Murugappan Muthukumar ◽  
Prabhat Tripathi ◽  
Byoung-jin Jeon

We have investigated how a pair of oppositely charged macromolecules can be driven by an electric field to form a polyelectrolyte complex inside a nanopore. To observe and isolate an individual complex pair, a model protein nanopore, embedded in artificial phospholipid membrane, allowing compartmentalization (cis/trans) is employed. A polyanion in the cis and a polycation in the trans compartments are subjected to electrophoretic capture by the pore. We find that the measured ionic current across the pore has a distinguishable signature of complex formation, which is different from the signature of the passage of individual molecules through the pore. The ionic current signature allows us to detect the interaction between the two oppositely charged macromolecules and thus, enables us to measure the lifetime of the complex inside the nanopore. After showing that we can isolate a complex pair in the nanopore, we studied the effects of molecular identity on the nature of interaction in different complex pairs. In contrast to the irreversible conductance state of the alpha hemolysin (alpha HL) channel in the complexation of poly-styrene sulfonate (PSS) and poly L lysine (PLL), a reversible conductance state is observed during complexation between single stranded DNA (ssDNA) and PLL. This suggests that there is a weak interaction between ssDNA and PLL, when compared to the interaction in a PSS PLL complex. Analysis of the PSS-PLL complexation events and its lifetime inside the nanopore supports a four step mechanism: (i) The polyanion is captured by the pore, (ii) the polyanion starts threading through the pore. (iii) The polycation is captured, a complex pair is formed in the pore, and the polyanion slides along the polycation. (iv) The complex pair can be pulled through the pore into the trans compartment or it can dissociate. Additionally, we have developed a simple theoretical model, which describes the lifetime of the complex inside the pore. The observed reversible two-state conductance across alpha HL channel during ssDNA PLL complexation, is described as the binding/unbinding of PLL during the translocation of ssDNA. This enables us to evaluate the apparent rate constants for association/dissociation and equilibrium dissociation constants for the interaction of PLL with ssDNA. This work throws light on the behavior of polyelectrolyte complexes in an electric field and enhances our understanding of the electrical aspects of inter-macromolecular interactions, which plays an extremely important role in the organization of macromolecules in the crowded and confined cellular environment.


2020 ◽  
Vol 117 (34) ◽  
pp. 20566-20575 ◽  
Author(s):  
Yin Yang ◽  
Shen-Na Chen ◽  
Feng Yang ◽  
Xia-Yan Li ◽  
Akiva Feintuch ◽  
...  

The complexity of the cellular medium can affect proteins’ properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron–electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer–monomer dissociation constantKDwas markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.


2020 ◽  
pp. 002215542093715 ◽  
Author(s):  
Yuefan Song ◽  
Fuming Zhang ◽  
Robert J. Linhardt

Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG–ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 511
Author(s):  
Taku Takahashi

Polyamines are small organic compounds found in all living organisms. According to the high degree of positive charge at physiological pH, they interact with negatively charged macromolecules, such as DNA, RNA, and proteins, and modulate their activities. In plants, polyamines, some of which are presented as a conjugated form with cinnamic acids and proteins, are involved in a variety of physiological processes. In recent years, the study of plant polyamines, such as their biosynthetic and catabolic pathways and the roles they play in cellular processes, has flourished, becoming an exciting field of research. There is accumulating evidence that polyamine oxidation, the main catabolic pathway of polyamines, may have a potential role as a source of hydrogen peroxide. The papers in this Special Issue highlight new discoveries and research in the field of plant polyamine biology. The information will help to stimulate further research and make readers aware of the link between their own work and topics related to polyamines.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 517 ◽  
Author(s):  
Pavel Semenyuk ◽  
Lidia Kurochkina ◽  
Kseniya Barinova ◽  
Vladimir Muronetz

The effect of a range of synthetic charged polymers on alpha-synuclein aggregation and amyloid formation was tested. Sulfated aromatic polymers, poly(styrene sulfonate) and poly(anethole sulfonate), have been found to suppress the fibril formation. In this case, small soluble complexes, which do not bind with thioflavin T, have been formed in contrast to the large stick-type fibrils of free alpha-synuclein. Sulfated polysaccharide (dextran sulfate), as well as sulfated vinylic polymer (poly(vinyl sulfate)) and polycarboxylate (poly(methacrylic acid)), enhanced amyloid aggregation. Conversely, pyridinium polycation, poly(N-ethylvinylpyridinium), switched the mechanism of alpha-synuclein aggregation from amyloidogenic to amorphous, which resulted in the formation of large amorphous aggregates that do not bind with thioflavin T. The obtained results are relevant as a model of charged macromolecules influence on amyloidosis development in humans. In addition, these results may be helpful in searching for new approaches for synucleinopathies treatment with the use of natural polymers.


Sign in / Sign up

Export Citation Format

Share Document