scholarly journals In vitro correlate for a clonal deletion mechanism of immune response gene-controlled nonresponsiveness.

1983 ◽  
Vol 157 (3) ◽  
pp. 998-1005 ◽  
Author(s):  
N Ishii ◽  
Z A Nagy ◽  
J Klein

We used T cell-antigen-presenting cell (APC) combinations from two pairs of recombinant mouse strains, B10.A(4R)-B10.A(2R) and B10.S(7R)-B10.S(9R) (abbreviated 4R, 2R, 7R, 9R, respectively), which differ from each other only in the nonexpression vs. expression of cell-surface E molecules, to study the mechanism of the Ir gene-controlled (E-restricted) response to the terpolymer poly(glu51lys34tyr15) (GLT). No response to GLT occurred when the APC were from E-nonexpressor strains 4R and 7R. When APC from E-expressor strains were used and alloreactivity against the incompatible E molecules was removed by BUdR + light treatment, 7R T cells responded to GLT presented by 9R APC, but 4R T cells failed to respond to GLT presented by 2R APC. However, 4R T cells mounted a proliferative response to GLT presented by fully allogeneic 5R or 9R APC. The latter response was completely abolished by the depletion of cells alloreactive against 2R and 5R or 2R and 9R. Since removal of alloreactivity against 5R plus 9R did not affect the response of 4R T cells to GLT presented by either 5R or 9R cells, we conclude that the 4R T cells generated in response to GLT cross-react with the additional incompatibility presented by 2R cells, that is, the Ek beta chain. In contrast, 7R T cells recognizing GLT presented by 9R APC do not cross-react with Ek beta. These results demonstrate that "blind spots" in the T cell repertoire produced by depletion of cells alloreactive against a single chain of a class II MHC molecule can render a strain nonresponsive to a synthetic polypeptide antigen, and that this nonresponsiveness corresponds to that attributed to the MHC-linked Ir genes.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3856-3862 ◽  
Author(s):  
Joost P.M. van Meerwijk ◽  
H. Robson MacDonald

Abstract Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8+ T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.


1992 ◽  
Vol 175 (2) ◽  
pp. 453-460 ◽  
Author(s):  
M Papiernik ◽  
C Pontoux ◽  
S Gisselbrecht

BALB/c mice (H-2d, Mls-1b) from one colony progressively modify their T cell repertoire during aging, by deleting T cells that express products of the V beta 6 and V beta 8.1 genes of the T cell receptor. Clonal deletion occurs only in 50% of mice between 27 and 43 wk of age, affecting thymus, spleen, and lymph node T cells. The phenomenon is progressive and seems to affect nearly all thymuses between 14 and 19 wk of age. CD4+CD8- mature T cells are more affected than CD4-CD8+ cells. In the thymus, deletion occurs at the stage of immature J11d+ cells expressing a high level of V beta 6, while J11d+V beta 6low-expressing cells are not modified. Clonal deletion is thus an early phenomenon that deletes cells of the immature generative compartment in the thymus. This Mls-1a-like clonal deletion is associated neither with the expression of an Mls-1a-like antigen that could be identified in mixed lymphocyte reaction in vitro, nor with the presence of Mtv-7, the endogenous mouse mammary tumor virus (MMTV) proviral loci. Spleen cells, bone marrow cells, and total thymocytes injected into newborn thymuses cannot induce V beta 6+ cell deletion. However, newborn thymuses grafted into old BALB/c mice behave like their recipients, suggesting that a new antigen, present in these old BALB/c mice, is indeed able to induce an Mls-1a-like clonal deletion. As other BALB/c colonies tested do not behave in same way, the hypothesis of a new exogenous deleting factor rather than a genetic transmission is likely. This may suggest that acquired clonal deletion is a more common phenomenon than expected, and may be the spontaneous reaction of the immune system to the introduction of a new retrovirus or other superantigen.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A785-A785
Author(s):  
Karin Hagerbrand ◽  
Mattias Levin ◽  
Laura Von Schantz ◽  
Laura Varas ◽  
Anna Säll ◽  
...  

BackgroundAlligator's Neo-X-Prime platform aims to enable antigen presenting cells to efficiently enhance priming of tumor neoantigen-specific T cells with the goal of overcoming PD-1 resistance in certain tumor types. We hypothesize that binding of a CD40 x TAA bispecific antibody (bsAb) to CD40 on dendritic cells (DCs) and a tumor-associated antigen (TAA) on tumor exosomes or tumor debris leads to (i) activation of the DC, (ii) uptake of the tumor material, (iii) cross-presentation of tumor-derived neoantigen (present in exosomes or debris) and, iv) priming of tumor neoantigen-specific T cells, resulting in an increased quantity and/or quality of the tumor-targeting T cell pool.MethodsFunctionality was evaluated in vitro using CD40 reporter cells and monocyte-derived DCs, co-cultured with cells expressing TAA. Further, co-localization of TAA-expressing cellular debris with a CD40-expressing human B cell line in the presence of bsAbs was assessed using live cell imaging. In vivo, anti-tumor efficacy and immunological memory were assessed in human CD40 transgenic (hCD40tg) mice bearing MB49 bladder carcinoma tumors transfected with human TAA or controls. T cells isolated from OVA-specific TCR-transgenic mice were used to evaluate the effect of Neo-X-Prime bsAbs on antigen-specific T cell expansion in the presence of hCD40tg DCs and exosomes from MB49 tumors transfected with both human TAA and OVA using flow cytometry.ResultsUsing CEA as a highly expressed TAA, we have developed lead Neo-X-Prime CD40-CEA bsAbs engineered to achieve an optimal profile. Further, using Neo-X-Prime concept molecules targeting EpCAM, we have demonstrated the ability to mediate co-localization of tumor debris and CD40 expressing antigen presenting cells that is dependent on the receptor density of the TAA. We have further shown that addition of Neo-X-Prime bsAbs to a co-culture of murine DCs, T cells and tumor-derived exosomes induces increased expansion of model neoantigen-specific T cells. In vivo, Neo-X-Prime bsAbs display a potent, TAA-dependent anti-tumor effect that is superior to CD40 mAbs. Cured mice develop a broad immunological memory that is not dependent on expression of the TAA. The tumor-localizing property of Neo-X-Prime bsAbs also shows potential for improved safety compared to CD40 monospecific antibodies.ConclusionsNeo-X-Prime bsAbs have the potential to tumor-selectively target CD40-expressing antigen-presenting cells to mediate an expansion of the tumor-specific T cell repertoire, resulting in increased T cell infiltration and potent anti-tumor effects.Ethics ApprovalAll experiments were performed after approval from the Malmö/Lund Animal Ethics Committee.


1982 ◽  
Vol 156 (2) ◽  
pp. 622-627 ◽  
Author(s):  
N Ishii ◽  
Z A Nagy ◽  
J Klein

The proliferative responses of T cells, depleted of alloreactive cells, were tested upon stimulation by antigens presented on allogeneic antigen-presenting cells (APC). Restriction molecules involved in these responses were identified by inhibition of T cell proliferation with monoclonal antibodies against A(A alpha A beta) and E(E alpha E beta) molecules of the APC. The responses to all three antigens tested [Poly(Glu40Ala60) (GA), lactate dehydrogenase B (LDHB), and poly(Glu51, Lys34, Tyr15) (GLT)] were A plus E restricted when the allogeneic APC expressed both molecules, and only A restricted when the APC did not express cell surface E molecules. In contrast, when T cells and APC are syngeneic, the same antigens are recognized only in the context of either A molecules (GA and LDHB) or E molecules (GLT). The data indicate that the immune response gene control of these responses is not associated with either a failure of antigen presentation, or the lack of certain T cell specificities from the germ line repertoire, but probably with selective somatic elimination (tolerance) of certain clones from the T cell repertoire.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3856-3862 ◽  
Author(s):  
Joost P.M. van Meerwijk ◽  
H. Robson MacDonald

Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8+ T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A810-A810
Author(s):  
Arianna Draghi ◽  
Katja Harbst ◽  
Inge Svane ◽  
Marco Donia

BackgroundDetecting the entire repertoire of tumor-specific reactive T cells is essential for investigating the broad range of T cell functions in the tumor-microenvironment. At present, assays identifying tumor-specific functional activation measure either upregulation of specific surface molecules, de novo production of the most common antitumor cytokines or mobilization of cytotoxic granules.MethodsIn this study, we combined transcriptomic analyses of tumor-specific reactive tumorinfiltrating lymphocytes (TILs), TIL-autologous tumor cell co-cultures and commonly used established detection protocols to develop an intracellular flow cytometry staining method encompassing simultaneous detection of intracellular CD137, de novo production of TNF and IFNy and extracellular mobilization of CD107a.ResultsThis approach enabled the identification of a larger fraction of tumor-specific reactive T cells in vitro compared to standard methods, revealing the existence of multiple distinct functional clusters of tumor-specific reactive TILs. Publicly available datasets of fresh tumor single-cell RNA-sequencing from four cancer types were investigated to confirm that these functional biomarkers identified distinct functional clusters forming the entire repertoire of tumor-specific reactive T cells in situ.ConclusionsIn conclusion, we describe a simple method using a combination of functional biomarkers that improves identification of the tumor-specific reactive T cell repertoire in vitro and in situ.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


1995 ◽  
Vol 25 (7) ◽  
pp. 2115-2118 ◽  
Author(s):  
Josef M. Penninger ◽  
Marco W. Schilham ◽  
Emma Timms ◽  
Valerie A. Wallace ◽  
Tak W. Mak

2021 ◽  
Vol 12 ◽  
Author(s):  
Manoj Patidar ◽  
Naveen Yadav ◽  
Sarat K. Dalai

IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.


Sign in / Sign up

Export Citation Format

Share Document