scholarly journals HLA B37 determines an influenza A virus nucleoprotein epitope recognized by cytotoxic T lymphocytes.

1986 ◽  
Vol 164 (5) ◽  
pp. 1397-1406 ◽  
Author(s):  
A J McMichael ◽  
F M Gotch ◽  
J Rothbard

Human influenza A virus-specific, cytotoxic T cells have been shown previously to recognize the virus nucleoprotein on infected cells. CTL preparations from four HLA B37-positive donors were shown to recognize a synthetic peptide that corresponded to amino acids 335-349 of the nucleoprotein sequence. Influenza-specific CTL from 10 donors of other HLA types failed to recognize this epitope. CD8+ CTL lines were derived from lymphocytes of two HLA B37-positive donors and used to show that the peptide was represented on virus-infected cells and to determine the probable boundaries of the epitope.

2006 ◽  
Vol 80 (12) ◽  
pp. 6024-6032 ◽  
Author(s):  
Adrianus C. M. Boon ◽  
Gerrie de Mutsert ◽  
Ron A. M. Fouchier ◽  
Albert D. M. E. Osterhaus ◽  
Guus F. Rimmelzwaan

ABSTRACT Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP418-426 epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP418-426-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.


1993 ◽  
Vol 37 (4) ◽  
pp. 252-258 ◽  
Author(s):  
Samir Y. Sauma ◽  
Maureen C. Gammon ◽  
Maria A. Bednarek ◽  
Barry Cunningham ◽  
William E. Biddison ◽  
...  

1988 ◽  
Vol 168 (6) ◽  
pp. 2045-2057 ◽  
Author(s):  
F Gotch ◽  
A McMichael ◽  
J Rothbard

CTL specific for the influenza A virus matrix peptide 57-68 and restricted by HLA-A2 were studied. Their ability to recognize a set of analogue peptides, each of which differed from the natural peptide by a single amino acid, was analyzed. This revealed a core of five amino acids, 61-65, where one or more changes completely abrogated recognition. The glycine at position 61 was the only residue where no substitution was tolerated. Analogue peptides that did not induce CTL-mediated lysis were tested as competitors with the natural peptide; those with substitutions at positions 60, 64, and 65 inhibited, identifying residues that interact with the TCR. Another approach was to test a set of four CTL clones on all of the analogues. Marked differences in recognition by individual CTL clones were observed for several substituted peptides. The data indicate that most of the analogues bind to HLA-A2 with possible differences in fine positioning of the peptide. An alpha helical orientation for the peptide is discussed.


2016 ◽  
Vol 94 (5) ◽  
pp. 439-446 ◽  
Author(s):  
Patricia (Hoi Yee) Lee ◽  
Nicola Bird ◽  
Charley MacKenzie‐Kludas ◽  
Ashley Mansell ◽  
Katherine Kedzierska ◽  
...  

2001 ◽  
Vol 75 (23) ◽  
pp. 11392-11400 ◽  
Author(s):  
Heiner Wedemeyer ◽  
Eishiro Mizukoshi ◽  
Anthony R. Davis ◽  
Jack R. Bennink ◽  
Barbara Rehermann

ABSTRACT The cellular immune response contributes to viral clearance as well as to liver injury in acute and chronic hepatitis C virus (HCV) infection. An immunodominant determinant frequently recognized by liver-infiltrating and circulating CD8+ T cells of HCV-infected patients is the HCVNS3-1073 peptide CVNGVCWTV. Using a sensitive in vitro technique with HCV peptides and multiple cytokines, we were able to expand cytotoxic T cells specific for this determinant not only from the blood of 11 of 20 HCV-infected patients (55%) but also from the blood of 9 of 15 HCV-negative blood donors (60%), while a second HCV NS3 determinant was recognized only by HCV-infected patients and not by seronegative controls. The T-cell response of these healthy blood donors was mediated by memory T cells, which cross-reacted with a novel T-cell determinant of the A/PR/8/34 influenza A virus (IV) that is endogenously processed from the neuraminidase (NA) protein. Both the HCV NS3 and the IV NA peptide displayed a high degree of sequence homology, bound to the HLA-A2 molecule with high affinity, and were recognized by cytotoxic T lymphocytes with similar affinity (10−8 M). Using the HLA-A2-transgenic mouse model, we then demonstrated directly that HCV-specific T cells could be induced in vivo by IV infection. Splenocytes harvested from IV-infected mice at the peak of the primary response (day 7 effector cells) or following complete recovery (day 21 memory cells) recognized the HCV NS3 peptide, lysed peptide-pulsed target cells, and produced gamma interferon. These results exemplify that host responses to an infectious agent are influenced by cross-reactive memory cells induced by past exposure to heterologous viruses, which could have important consequences for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document