scholarly journals Mobilization of long-term reconstituting hematopoietic stem cells in mice by recombinant human interleukin 7.

1995 ◽  
Vol 181 (1) ◽  
pp. 369-374 ◽  
Author(s):  
K J Grzegorzewski ◽  
K L Komschlies ◽  
S E Jacobsen ◽  
F W Ruscetti ◽  
J R Keller ◽  
...  

Administration of recombinant human interleukin 7 (rh)IL-7 to mice has been reported by our group to increase the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakarocyte macrophage) from the bone marrow to peripheral organs (blood, spleen[s], and liver). We now report that IL-7 also stimulates a sixfold increase in the number of more primitive CFU-S day 8 (CFU-S8) and day 12 (CFU-S12) in the peripheral blood leukocytes (PBL) of mice treated with rhIL-7 for 7 d. Moreover, > 90% of lethally irradiated recipient mice that received PBL from rhIL-7-treated donor mice have survived for > 6 mo whereas none of the recipient mice that received an equal number of PBL from diluent-treated donors survived. Flow cytometry analysis at 3 and 6 mo after transplantation revealed complete trilineage (T, B, and myelomonocytic cell) repopulation of bone marrow, thymus, and spleen by blood-borne stem/progenitor cells obtained from rhIL-7-treated donor mice. Thus, IL-7 may prove valuable for mobilizing pluripotent stem cells with long-term repopulating activity from the bone marrow to the peripheral blood for the purpose of gene modification and/or autologous or allogeneic stem cell transplantation.

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Tom Seijkens ◽  
Marten A. Hoeksema ◽  
Linda Beckers ◽  
Svenja Meiler ◽  
Esther Smeets ◽  
...  

During homeostasis hematopoietic stem and progenitor stem cells (HSPCs) give rise to lymphoid and myeloid cells as well as platelets and erythrocytes. However, during chronic inflammatory conditions hematopoiesis is often skewed towards the myeloid lineage, thereby potentially aggravating the ongoing inflammation. Here we investigated the effects of hypercholesterolemia on HSPCs during atherogenesis. Hypercholesterolemia increased HSPCs, defined as Lin - Sca1 + cKit - , in the bone marrow (BM) of LDLr -/- mice by 253.1%. The number of granulocyte-monocyte progenitors, BM granulocytes and BM monocytes was increased by 18.1%, 34.8% and 13.2%, respectively. In accordance, the myeloid colony forming potential of hypercholesterolemic BM was increased by 25.8%. Peripheral blood monocytes and granulocytes were increased by 203.0% and 161.1%, respectively. Competitive bone marrow transplantations (cBMT) in which we compared the effects of normo- vs. hypercholesterolemia primed HSPCs confirmed that the hypercholesterolemic microenvironment activates HSPCs, as reflected by a 26.5% increased reconstitution of peripheral blood leukocytes 10 weeks after the cBMT. Moreover, hypercholesterolemia-primed, and not normocholesterolemia-primed HSPCs acquired an enhanced propensity to generate myeloid cells, especially granulocytes and Ly6C high monocytes, even under long-term normocholesterolemic conditions in the recipient animals. cBMT demonstrated that hypercholesterolemia-induced activation of HSPCs increased atherosclerosis in LDLr -/- mice by 122.1% and increased CD45.1 + plaque leukocytes by 76.1%. Macrophages differentiated from hypercholesterolemia-primed BM produced increased levels of TNFα (+21.3%), IL6 (+17.4%) and MCP1 (+10.5%) compared to their normocholesterolemic counterparts, demonstrating that hypercholesterolemia-induced priming of HSPCs increased the inflammatory phenotype of their mature offspring. These results demonstrate that hypercholesterolemia-induced priming of HSPCs aggravates atherosclerosis by skewing hematopoiesis towards the pro-inflammatory myeloid lineages. Inhibition of this pro-inflammatory differentiation pathway on HSPC level has the potential to reduce atherosclerosis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2325-2325
Author(s):  
Joseph Yusup Shin ◽  
Wenhuo Hu ◽  
Christopher Y. Park

Abstract Abstract 2325 Hematopoietic stem cells (HSC) can be identified on the basis of differential cell surface protein expression, such that 10 out of 13 purified HSC (Lin−c-Kit+Sca-1+CD150+CD34−FLK2−) exhibit long-term reconstitution potential in single-cell transplants. HSCs express c-Kit, and interactions between c-Kit and its ligand, stem cell factor, have been shown to be critical for HSC self-renewal; however, HSCs express a log-fold variation in c-Kit levels. We hypothesized that differing levels of c-Kit expression on HSCs may identify functionally distinct classes of HSCs. Thus, we measured the function and cellular characteristics of c-Kithi HSCs and c-Kitlo HSCs (defined as the top 30% and bottom 30% of c-Kit expressors, respectively), including colony formation, cell cycle status, lineage fates, and serial engraftment potential. In methylcellulose colony assays, c-Kithi HSCs formed 5-fold more colonies than c-Kitlo HSCs (P=0.01), as well as 4-fold more megakaryocyte colonies in vitro. c-Kithi HSC were 2.4-fold enriched for cycling cells (G2-S-M) in comparison to c-Kitlo HSC as assessed by flow cytometry in vivo (15.4% versus 6.4%, P=0.001). Lethally irradiated mice competitively transplanted with 400 c-Kitlo HSCs and 300,000 competitor bone marrow cells exhibited increasing levels of donor chimerism, peaking at a mean of 80% peripheral blood CD45 chimerism by 16 weeks post-transplantation, whereas mice transplanted with c-Kithi HSCs reached a mean of 20% chimerism (p<0.00015). Evaluation of the bone marrow revealed an increase in HSC chimerism from 23% to 44% in mice injected with c-Kitlo HSCs from weeks 7 to 18, while HSC chimerism decreased from 18% to 3.0% in c-Kithi HSC-transplanted mice (P<0.00021). Levels of myeloid chimerism in the bone marrow and peripheral blood were not significantly different during the first 4 weeks following transplantation between mice transplanted with c-Kithi or c-Kitlo HSCs, and evaluation of HSC bone marrow lodging at 24 hours post-transplantation demonstrated no difference in the number of c-Kithi and c-Kitlo HSCs, indicating that differential homing is not the reason for the observed differences in long-term engraftment. Donor HSCs purified from mice transplanted with c-Kithi HSC maintained higher levels of c-Kit expression compared to those from mice injected with c-Kitlo HSC by week 18 post-transplantation (P=0.01). Secondary recipients serially transplanted with c-Kithi HSC exhibited a chimerism level of 40% to 3% from week 4 to 8 post-secondary transplant, whereas chimerism levels remained at 6% in mice injected with c-Kitlo HSC. These results indicate that c-Kithi HSCs exhibit reduced self-renewal capacity compared with c-Kitlo HSCs, and that the differences in c-Kithi and c-Kitlo HSC function are cell-intrinsic. Analysis of transplanted HSC fates revealed that c-Kithi HSCs produced two-fold more pre-megakaryocyte-erythroid progenitors and pluriploid megakaryocytes compared to their c-Kitlo counterparts in vivo, suggesting a megakaryocytic lineage bias in c-Kithi HSC. Consistent with this finding, the transplanted c-Kithi HSC gave rise to 10-fold more platelets and reached a maximum platelet output two days earlier than c-Kitlo HSC. To determine the potential mechanisms underlying the transition from c-Kitlo to c-Kithi HSCs, we assessed the activity of c-Cbl, an E3 ubiquitin ligase known to negatively regulate surface c-Kit expression in a Src-dependent manner. Flow cytometric analysis revealed 6-fold more activated c-Cbl in freshly purified c-Kitlo HSC compared to c-Kithi HSC (P=0.02), suggesting that functional loss of c-Cbl increases c-Kit expression on c-Kitlo HSCs. Mice treated for nine days with Src inhibitors, which inhibit c-Cbl activity, experienced a 1.5-fold and 2-fold increase in the absolute number of c-Kithi HSCs (P=0.067) and megakaryocyte progenitors (P=0.002), respectively. Thus, c-Cbl loss likely promotes the generation of c-Kithi HSCs. In summary, differential expression of c-Kit identifies HSC with distinct functional attributes with c-Kithi HSC exhibiting increased cell cycling, megakaryocyte lineage bias, decreased self-renewal capacity, and decreased c-Cbl activity. Since c-Kitlo HSC represent a population of cells enriched for long-term self-renewal capacity, characterization of this cell population provides an opportunity to better understand the mechanisms that regulate HSC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4739-4739
Author(s):  
Hiroyoshi Kunimoto ◽  
Yumi Fukuchi ◽  
Masatoshi Sakurai ◽  
Daichi Abe ◽  
Ken Sadahira ◽  
...  

Abstract Abstract 4739 Ten-eleven-translocation 2 (TET2) gene is one of the frequent targets of mutation in various hematologic malignancies. These observations suggest critical roles of TET2 dysfunction in their molecular pathogenesis. To investigate physiological roles of TET2 in hematopoiesis, we previously analyzed fetal liver (FL) hematopoiesis of Tet2 gene-trap (Tet2gt) mice and showed that Tet2gt/gt FL cells displayed enhanced self-renewal and long term repopulating (LTR) capacity with expansion of Lineage(−)Sca-1(+)c-Kit(+) (LSK) and common myeloid progenitor (CMP) fractions. However, there remain several questions unanswered. First, self-renewal capacity was examined only by using bulk FL cells and therefore effects of Tet2 loss on purified cell populations such as hematopoietic stem cells (HSCs) or hematopoietic progenitor cells (HPCs) remain elusive. Second, because other groups have reported myeloid transformation in Tet2 conditional knockout mice, it is possible that Tet2 loss confers self-renewal capacity to non-self-renewing myeloid progenitors such as CMPs. Third, effects of Tet2 haploinsufficiency on adult hematopoiesis was not examined using purified HSCs or HPCs. To address these issues, we analyzed E14.5 FL and adult bone marrow (BM) cells from Tet2gt mice. We first performed serial replating assay of FL-LSK cells in methylcellulose containing interleukin (IL)-3, IL-6, stem cell factor (SCF) and erythropoietin (Epo). In this assay, Tet2gt/gt FL-LSK cells showed significantly higher replating capacity as compared to that of WT cells. Interestingly, Tet2gt/gt FL-LSK cells formed various types of colonies including granulocyte-macrophage (GM) and erythrocyte-megakaryocyte (EM) colonies, whereas WT FL-LSK cells generated only GM colonies at the second time of replating, showing that multipotent differentiation capacity was maintained in Tet2gt/gt cells even in the presence of lineage-acting cytokines. Next we examined the self-renewal capacity of highly purified FL-HSCs (CD34+LSK or CD150+LSK cells) by competitive repopulation assay. As expected, the recipients of Tet2gt/gt CD34+LSK cells showed significantly higher donor chimerism in peripheral blood as compared to those receiving WT cells. Furthermore, CD150+LSK cells from Tet2+/gt and Tet2gt/gt FLs demonstrated higher peripheral blood repopulation in the secondary and tertiary recipient mice as compared to that of WT recipients in serial transplantation assay. These results indicate that the enhanced self-renewal and LTR capacity of Tet2-mutant FL cells was uniquely associated with highly purified HSCs. This conclusion also applied to the BM LSK cells from adult mice, since Tet2+/gt BM LSK cells also showed significantly higher peripheral blood contribution compared to the WT cells in serial transplantation assays. This result demonstrates that Tet2 haploinsufficiency is sufficient to confer the enhanced self-renewal and LTR capacity to HSCs in adult hematopoiesis. Lastly, we examined self-renewal capacity of FL CMPs by serial replating assay. Interestingly, Tet2gt/gt FL CMP cells displayed increased replating capacity as compared to WT cells. However, in vivo repopulation assay using Tet2+/+, Tet2+/gt, and Tet2gt/gt FL CMP cells showed no significant difference in peripheral blood chimerism among these recipients. Taken together, enhanced self-renewal and LTR capacity by Tet2 ablation is uniquely associated with HSCs in FL and adult BM, but not with myeloid progenitors, indicating that Tet2 regulates self-renewal program intrinsic to HSCs. In addition, Tet2 haploinsufficiency is sufficient to enhance self-renewal and LTR capacity of HSCs, which explains pathological relation between high incidence of heterozygous TET2 mutations and hematologic malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 199-199 ◽  
Author(s):  
Marion G. Ott ◽  
Manfred Schmidt ◽  
Stefan Stein ◽  
Kerstin Schwarzwaelder ◽  
Ulrich Siler ◽  
...  

Abstract Gene transfer into hematopoietic stem cells has been successfully used to correct immunodeficiencies affecting the lymphoid compartment. However, similar results have not been reported for diseases affecting myeloid cells, mainly due to low engraftment levels of gene-modified cells observed in unconditioned patients. Here we report on two adult patients (P1 and P2, follow up >24 months) and one child (P3, 6 years, follow up 15 months) who received gene-transduced hematopoietic stem cells in combination with nonmyeloablative bone marrow conditioning for the treatment of X-linked Chronic Granulomatous Disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes. Therapeutically significant gene marking was detected in neutrophils of both adult patients (P1 and P2) leading to large numbers (up to 60%) of functionally corrected phagocytes 24 months after gene therapy. This high correction resulted from an unexpected but temporarily restricted expansion of gene transduced myeloid cells in vivo. In contrast gene marking and functionally reconstitution levels in P3 have been low (1–2%). Both adult patients suffered from active infections prior to gene therapy (P1 of bacterial liver abscesses and P2 of lung aspergillosis) and were free of severe bacterial and fungal infections until 24 months after transplantation. P3 suffered from an Aspergillus infection of the spinal cord with paraparesis before transplantation and recovered after gene therapy despite low numbers of functionally corrected cells in the peripheral blood. Large-scale mapping of retroviral integration site distribution revealed that activating insertions in the zinc finger transcription factor homologs MDS1/EVI1, PRDM16, or in SETBP1 have expanded gene-corrected long term myelopoiesis 3- to 4-fold in both adults, providing direct evidence in humans that these genes may influence regulation of normal long-term hematopoiesis. The hematopoietic repopulation in P1 was polyclonal until 18 months after therapy. P1 died of a severe bacterial sepsis after colon perforation 27 months after gene therapy. No evidence of malignant transformation was found in peripheral blood or bone marrow aspirates from this patient. Gene marking at death was still 60%; however the function of gene transduced cells, the number of corrected cell clones and the activity of a predominant clone was greatly decreased. P2 has been free of infections since transplantation (last monitoring: month 26). Hematopoietic repopulation was polyclonal in P2 until day 560. In conclusion, gene therapy in combination with bone marrow conditioning has provided a transitory therapeutic benefit for all 3 patients. Further improvements in vector design and conditioning regimes are under investigation to provide a stable and long term correction of the disease.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 1006-1016 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks ◽  
DB Tumas

Hematopoietic stem cells were isolated from normal adult mouse bone marrow based on surface antigen expression (Thy-1.1(low)Lin(neg)Ly- 6A/E+) and further selected for low retention of rhodamine 123. This population of cells (Rh-123low) could mediate radioprotection and long- term (greater than 12 months) repopulation after transplantation of as few as 25 cells. Transfer of five genetically marked Rh-123low cells in the presence of 10(5) normal bone marrow cells resulted in reconstitution of peripheral blood by greater than 10% donor cells in 64% (30 of 47) of recipient mice. Of 46 animals surviving after 24 weeks, 10 had over 50% donor-derived cells in peripheral blood. Two general patterns of long-term reconstitution were observed: one in which many donor-derived cells were observed 5 to 6 weeks after reconstitution and another in which donor-derived cells were rare initially but expanded with time. This result suggests that two classes of long-term repopulating hematopoietic stem cells exist, differing in their ability to function early in the course of transplantation. Alternatively, distinct anatomic sites of engraftment may dictate these two outcomes from a single type of cell. As an approach to measure the extent of self-renewal by the injected cells, recipients of five or 200 stem cells were killed 8 to 13 months after the transplants, and Thy- 1.1(low)Lin(neg)Ly-6A/E+ progeny of the original injected cells were isolated for a second transplant. While a numerical expansion of cells expressing the cell surface phenotype of stem cells was observed, along with activity in the colony-forming unit-spleen assay, the expanded cells were vastly inferior in radioprotection and long-term reconstitution assays when compared with cells freshly isolated from normal animals. This result demonstrates that in stem cell expansion experiments, cell surface antigen expression is not an appropriate indicator of stem cell function.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 368-368
Author(s):  
Jonathan Hoggatt ◽  
Pratibha Singh ◽  
Tiffany Tate ◽  
Peter V. Kharchenko ◽  
Amir Schajnovitz ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are at the apex of lifelong blood cell production. Recent clonal analysis studies suggest that HSCs are heterogeneous in function and those that contribute to homeostatic production may be distinct from those that engraft during transplant. We developed a rapid mobilization regimen utilizing a unique CXCR2 agonist (an N-terminal truncated MIP-2a) and the CXCR4 antagonist AMD3100. A single subcutaneous injection of both agents together resulted in rapid mobilization in mice with a peak progenitor cell content in blood reached within 15 minutes. This mobilization was equivalent to a 5-day regimen of G-CSF. This rapid mobilization is the result of synergistic signaling, and was blocked in CXCR4 or CXCR2 knockout mice, confirming receptor and mechanism specificity. Mobilization is caused by synergistic release of MMP-9 from neutrophils and mobilization was blocked in MMP-9 knockout mice, mice treated with an anti-MMP-9 antibody, TIMP-1 transgenic mice, or mice where neutrophils were depleted in vivo using anti-GR-1 antibody. In vivo confocal imaging of mice demonstrated that the mobilization regimen causes a rapid and transient increase in bone marrow vascular permeability, "opening the doorway" for hematopoietic egress to the peripheral blood. Transplantation of 2x106 peripheral blood mononuclear cells (PBMC) from the rapid regimen resulted in a 4 or 6 day quicker recovery of neutrophils and platelets, respectively, compared to a G-CSF mobilized graft (n=12 mice per group, P<0.01). In limiting dilution competitive transplants, the rapid regimen demonstrated a greater than 2-fold enhancement in competitiveness (n=30 mice/treatment group, 2 individual experiments, P<0.001). Additionally, in secondarily transplanted mice, competitiveness of the rapidly mobilized graft increased as measured by contribution to chimerism, while G-CSF mobilized grafts remained static (n=16 mice/group, P<0.01). Surprisingly, despite robust enhancement in both short and long-term engraftment by the rapidly mobilized graft, phenotypic analysis of the blood of mobilized mice for CD150+ CD48- Sca-1+ c-kit+ Lineage neg (SLAM SKL) cells, a highly purified HSC population, showed lower numbers of phenotypically defined HSCs than in the G-CSF group. These data suggested that a unique subset of "highly engraftable" HSCs (heHSCs) are mobilized by the rapid regimen compared to G-CSF. However, as our earlier studies were performed using grafts that contained the total PBMC fraction (similar to the clinical apheresis product) we could not rule out the potential contribution of accessory cells to the enhanced engrafting ability of the heHSCs. Therefore, in 3 independent experiments, we mobilized large cohorts of mice with the rapid regimen or G-CSF and sorted SLAM SKL cells from the PBMC fraction and competitively transplanted equal numbers of SLAM SKL cells from either the rapid regimen or G-CSF and tracked contribution to chimerism over 36 weeks. Remarkably, the heHSCs from the rapid regimen demonstrated a 2-fold enhancement in competitiveness compared to SLAM SKL cells from the G-CSF group (n=17 mice/group, P<0.0004). While appreciation for HSC heterogeneity has grown, methods are lacking for prospectively isolating differing HSC populations with known biologic function, to study molecular heterogeneity. Like panning for gold, we sought to use the differential mobilization properties of our rapid regimen and G-CSF as a "biologic sieve" to isolate the heterogeneous HSC populations from the blood. We again flow sorted SLAM SKL cells from mice mobilized with the rapid regimen or G-CSF and performed RNA-Seq analysis of the purified populations. The heHSCs mobilized by the rapid regimen had a unique transcriptomic signature compared to G-CSF mobilized or random HSCs acquired from bone marrow (P<0.000001). Strikingly, gene set enrichment analysis (GSEA) demonstrated that the heHSCs had a gene signature highly significantly clustered to that of fetal liver HSCs, further demonstrating the selective harvesting of a subset of highly engraftable stem cells. Our results mechanistically define a new mobilization strategy, that in a single day can mobilize a graft with superior engraftment properties compared to G-CSF, and selectively mobilize a novel population of heHSCs with an immature molecular phenotype capable of robust long-term engraftment. Disclosures Hoggatt: Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Scadden:Magenta Therapeutics: Consultancy, Equity Ownership; GlaxoSmithKline: Research Funding; Harvard University: Patents & Royalties. Pelus:GlaxoSmithKline: Consultancy.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1811-1817 ◽  
Author(s):  
Nina Drize ◽  
Joseph Chertkov ◽  
Elena Sadovnikova ◽  
Stefan Tiessen ◽  
Axel Zander

Abstract Mobilized peripheral blood stem cells (PBSC) are used as a source of hematopoietic stem cells for transplantation and gene therapy. It is still unclear, however, whether the PBSC are fully equivalent to normal bone marrow hematopoietic stem cells and whether they are able to provide long-term function of transgene in reconstituted mice. In the present study, mobilized PBSC from male mice were transduced with human adenosine desaminase gene (hADA) and were used for reconstitution of lethally irradiated female mice. At 112, 3, 6, 9, and 12 months after reconstitution, the bone marrow cells were repeatedly collected from each mouse under light anesthesia and the number of colony-forming unit-spleen (CFU-S), spleen repopulating ability (SRA), and the integration of human ADA gene were studied in CFU-S–derived colonies by polymerase chain reaction (PCR) and Southern blot hybridization analyses. After 9 months, the proportion of donor CFU-S detected by PCR with a Y-chromosome–specific probe in mice reconstituted with mobilized PBSC was 75.3% ± 6.0%, which is similar to the concentration of donor CFU-S seen after bone marrow transplantation. Similarly, there was no difference in the concentration of CFU-S in mice reconstituted with transduced mobilized PBSC or bone marrow cells. However, in both cases the CFU-S content in the bone marrow was reduced fivefold to 10-fold compared with the concentration of CFU-S in mice transplanted with nontransduced bone marrow. The SRA of CFU-S in mice reconstituted with peripheral blood and bone marrow cells was the same 1.5 months posttransplantation, but after an additional 4 months, SRA of mice reconstituted with bone marrow cells was fivefold higher as compared with those engrafted by PBSC. The integration of the human ADA gene was observed during 9 months in about 60% of studied CFU-S. The proportion of marked colonies sharply decreased 1 year following reconstitution. One to 9 individually labeled clones could be shown simultaneously by Southern blot hybridization in the same reconstituted mice during the whole period of observation. The time of clone existence was about 3 months. We conclude that long-term marrow repopulating cells mobilized into circulation by treatment with granulocyte colony-stimulating factor (G-CSF ) and stem cell factor (SCF ) are capable of maintaining lifelong polyclonal hematopoiesis in reconstituted mice.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1811-1817
Author(s):  
Nina Drize ◽  
Joseph Chertkov ◽  
Elena Sadovnikova ◽  
Stefan Tiessen ◽  
Axel Zander

Mobilized peripheral blood stem cells (PBSC) are used as a source of hematopoietic stem cells for transplantation and gene therapy. It is still unclear, however, whether the PBSC are fully equivalent to normal bone marrow hematopoietic stem cells and whether they are able to provide long-term function of transgene in reconstituted mice. In the present study, mobilized PBSC from male mice were transduced with human adenosine desaminase gene (hADA) and were used for reconstitution of lethally irradiated female mice. At 112, 3, 6, 9, and 12 months after reconstitution, the bone marrow cells were repeatedly collected from each mouse under light anesthesia and the number of colony-forming unit-spleen (CFU-S), spleen repopulating ability (SRA), and the integration of human ADA gene were studied in CFU-S–derived colonies by polymerase chain reaction (PCR) and Southern blot hybridization analyses. After 9 months, the proportion of donor CFU-S detected by PCR with a Y-chromosome–specific probe in mice reconstituted with mobilized PBSC was 75.3% ± 6.0%, which is similar to the concentration of donor CFU-S seen after bone marrow transplantation. Similarly, there was no difference in the concentration of CFU-S in mice reconstituted with transduced mobilized PBSC or bone marrow cells. However, in both cases the CFU-S content in the bone marrow was reduced fivefold to 10-fold compared with the concentration of CFU-S in mice transplanted with nontransduced bone marrow. The SRA of CFU-S in mice reconstituted with peripheral blood and bone marrow cells was the same 1.5 months posttransplantation, but after an additional 4 months, SRA of mice reconstituted with bone marrow cells was fivefold higher as compared with those engrafted by PBSC. The integration of the human ADA gene was observed during 9 months in about 60% of studied CFU-S. The proportion of marked colonies sharply decreased 1 year following reconstitution. One to 9 individually labeled clones could be shown simultaneously by Southern blot hybridization in the same reconstituted mice during the whole period of observation. The time of clone existence was about 3 months. We conclude that long-term marrow repopulating cells mobilized into circulation by treatment with granulocyte colony-stimulating factor (G-CSF ) and stem cell factor (SCF ) are capable of maintaining lifelong polyclonal hematopoiesis in reconstituted mice.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4756-4756
Author(s):  
Laura R. Goldberg ◽  
Mark Dooner ◽  
Elaine Papa ◽  
Mandy Pereira ◽  
Del Tatto Michael ◽  
...  

Abstract Background: Hematopoietic stem cells (HSCs) have tremendous self-renewal and differentiation capacity. The majority of murine hematopoietic stem cell studies have focused on rare purified populations of HSCs, conventionally described as negative for lineage-specific markers and positive for particular cell surface epitope profiles, including c-Kit, Sca-1, and CD150. However, our data indicate that such purifications lead to the loss of a significant population of actively cycling marrow cells with long-term multi-lineage stem cell potential. In the studies presented here, we tested the hypothesis that this discarded stem cell population lies, in part, within the lineage positive (Lin+) fraction of marrow. Methods: We flushed whole bone marrow (WBM) from B6.SJL mice and incubated it with allophycocyanin-tagged antibodies against erythroid (TER119), myeloid (CD11b, GR1), B-lymphoid (B220), or T-lymphoid (CD3, CD4, CD8) markers. Different doses of each specific Lin+ subset isolated by fluorescence activated cell sorting were competitively engrafted into lethally irradiated C57BL/6 host mice. At 1,3, and 6 months post-transplant, peripheral blood was analyzed for donor contribution to chimerism and lineage specificity. Results: Although typically considered to be without stem cell activity, we found that all Lin+ sub-fractions upon single sorting were able to contribute to marrow repopulation in competitive bone marrow transplants. For example, when lethally irradiated recipient mice received 3x105 C57BL/6J competitive whole bone marrow cells in combination with single-sorted GR1+ ± CD11b+ cells (2x106 cells/mouse), peripheral blood showed 15% donor chimerism at 6 months. Similarly, if single sorted CD3+ ±CD4+ ±CD8+ cells (70,000 cells/mouse), B220+ cells (1x106 cells/mouse), or Ter119+ cells (1x106 cells/mouse) were competitively engrafted with 3x105 C57BL/6 WBM cells, the donor Lin+ sub-fractions contributed to 2%, 15%, and 35% peripheral blood chimerism at 6 months post-transplant, respectively. This contribution was multi-lineage in all cases. When we performed double sorting of the Lin+ subsets, there was a dramatically reduced engraftment capacity between 1-6% donor chimerism for all subgroups. However, we do not think the loss of stem cell capacity with double sorting seen in these studies is due merely to the loss of classical hematopoietic stem cells (Lineage-/stem cell marker+). In our earlier studies, we showed that the total Lin+ population contains long-term multi-lineage engraftment capacity due almost entirely to actively cycling cells. Therefore, if the engraftment capacity within the single sorted Lin+ sub-fractions was due solely to the presence of classical HSCs lost with double sorting, the engraftment capacity found within the Lin+ compartment should be due only to quiescent cells in keeping with the cell cycle status of engrafting highly purified stem cells. Conclusions: Based on these data, we predict that a cycling population of stem cells exists within this single sorted, Lin+ enriched fraction discarded with conventional HSC purification. Future studies are ongoing to further characterize the subsets of Lin+ cells that both remain Lin+ and are found to be Lin- upon double sorting. We will analyze these populations for engraftment capacity, concomitant stem cell marker expression and cell cycle status, in order to fully characterize the total stem cell potential within whole bone marrow that is not included in the purified HSC populations. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3194-3194
Author(s):  
George L. Chen ◽  
Kotung Chang ◽  
Xiaosong Huang ◽  
Gerald J. Spangrude ◽  
Josef T. Prchal

Abstract Murine hematopoietic stem cells (HSC) transfected with a gain-of-function human erythropoietic receptor (EPOR) transgene were reported to have a competitive advantage over wild type mouse hematopoietic stem cells in a bone marrow transplantation (BMT) model (Kirby, Blood95(12): 3710, 2000). However, EPOR transgenes may not be normally expressed in early progenitor/stem cells. Moreover, whether Epo/EpoR signaling plays a role in hematopoietic stem cell engraftment is unknown. Our lab previously created mouse models harboring the wild type human EPOR (wthEPOR) or the mutant human gain-of-function EPOR (mthEPOR) gene knocked into the mouse EPOR locus (Divoky, PNAS 98(3): 986, 2001). This animal model has augmented Epo signaling in all tissues that express EpoR, thus the wthEPOR mice are anemic while the mthEPOR mice are polycythemic. We compared the relative engraftment efficiency of mthEPOR vs. wthEPOR HSCs in a competitive bone marrow transplantation (BMT) assay using C57/Bl6 congenic mice. Bone marrow from wthEPOR (CD45.1) and mthEPOR (CD45.2) mice were co-transplanted (1:1) into lethally irradiated (137Cs > 11Gy split) normal recipients (CD45.1/CD45.2). At 7 months after transplantation, peripheral blood chimerism demonstrated skewing towards wthEPOR rather than mthEPOR origin in the granulocyte, macrophage, T cell, and B cell compartments (Data Table). Bone marrow chimerism paralleled peripheral blood chimerism (not shown). Examination of the stem cell compartment by Hoechst 33342 staining demonstrated similar skewing towards wthEPOR origin (Data Table). Because unequal numbers of HSC may result in skewed chimerism, we examined the relative proportions of HSC to total bone marrow cells. In wthEPOR mice, the Flt3− Rh123low subset of cKit+Sca1+ cells (KLS-FS) cells represented 0.011±0.003% of total bone marrow cells while in mthEPOR mice these cells represented 0.023±0.006% of total bone marrow cells (p=0.025). Since equal numbers of wthEPOR and mthEPOR total bone marrow cells were co-transplanted, relatively fewer wthEPOR HSC than mthEPOR HSC were transferred. Taken with the above chimerism data showing skewing towards wthEPOR, these results suggest that wthEPOR HSCs have a significant engraftment advantage over mthEPOR HSCs. Furthermore, enhanced Epo/EpoR signaling may interfere with the long term repopulation of hematopoietic progenitors. Hematopoietic stem cells undergo self renewal or differentiation/proliferation; in the presence of erythropoietin, a cytokine with proliferative and differentiating properties, it may be that self renewal is suppressed leading ultimately to the observed skewed chimerism. These data suggest that erythropoietin administration to patients during and immediately after marrow transplantation may be detrimental and should be used judiciously. Peripheral Blood and Marrow Chimerism Compartment wthEPOR (CD45.1) mthEPOR (CD45.2) Endogenous control (CD45.1/CD45.2) All p values for wthEPOR vs mthEPOR < 0.01 Neutrophil (blood) 72.7% 18.8% 8.5% Macrophage (blood) 76.8% 14.7% 8.5% T cell (blood) 78.6% 9.3% 12.2% B cell (blood) 72.8% 17.7% 9.5% HSC (marrow) 66% 15.1% 18.9%


Sign in / Sign up

Export Citation Format

Share Document