scholarly journals Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice.

1995 ◽  
Vol 181 (2) ◽  
pp. 817-821 ◽  
Author(s):  
S Trembleau ◽  
G Penna ◽  
E Bosi ◽  
A Mortara ◽  
M K Gately ◽  
...  

T cells play a major role in the development of insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. Administration of interleukin 12 (IL-12), a key cytokine which guides the development of T helper type 1 (Th1) CD4+ T cells, induces rapid onset of IDDM in NOD, but not in BALB/c mice. Histologically, IL-12 administration induces massive infiltration of lymphoid cells, mostly T cells, in the pancreatic islets of NOD mice. CD4+ pancreas-infiltrating T cells, after activation by insolubilized anti T cell receptor antibody, secrete high levels of interferon gamma and low levels of IL-4. Therefore, IL-12 administration accelerates IDDM development in genetically susceptible NOD mice, and this correlates with increased Th1 cytokine production by islet-infiltrating cells. These results hold implications for the pathogenesis, and possibly for the therapy of IDDM and of other Th1 cell-mediated autoimmune diseases.

1989 ◽  
Vol 169 (5) ◽  
pp. 1669-1680 ◽  
Author(s):  
C Boitard ◽  
R Yasunami ◽  
M Dardenne ◽  
J F Bach

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice.


1996 ◽  
Vol 184 (5) ◽  
pp. 1963-1974 ◽  
Author(s):  
I S Grewal ◽  
K D Grewal ◽  
F S Wong ◽  
D E Picarella ◽  
C A Janeway ◽  
...  

Lately, TNF alpha has been the focus of studies of autoimmunity; its role in the progression of autoimmune diabetes is, however, still unclear. To analyze the effects of TNF alpha in insulin-dependent diabetes mellitus (IDDM), we have generated nonobese diabetic (NOD) transgenic mice expressing TNF alpha under the control of the rat insulin II promoter (RIP). In transgenic mice, TNF alpha expression on the islets resulted in massive insulitis, composed of CD4+ T cells, CD8+ T cells, and B cells. Despite infiltration of considerable number of lymphoid cells in islets, expression of TNF alpha protected NOD mice from IDDM. To determine the mechanism of TNF alpha action, splenic cells from control NOD and RIP-TNF alpha mice were adoptively transferred to NOD-SCID recipients. In contrast to the induction of diabetes by splenic cells from control NOD mice, splenic cells from RIP-TNF alpha transgenic mice did not induce diabetes in NOD-SCID recipients. Diabetes was induced however, in the RIP-TNF alpha transgenic mice when CD8+ diabetogenic cloned T cells or splenic cells from diabetic NOD mice were adoptively transferred to these mice. Furthermore, expression of TNF alpha in islets also downregulated splenic cell responses to autoantigens. These data establish a mechanism of TNF alpha action and provide evidence that local expression of TNF alpha protects NOD mice from autoimmune diabetes by preventing the development of autoreactive islet-specific T cells.


2002 ◽  
Vol 70 (12) ◽  
pp. 6621-6627 ◽  
Author(s):  
Donatella Pietrella ◽  
Rosanna Mazzolla ◽  
Patrizia Lupo ◽  
Lucia Pitzurra ◽  
Maria Jesus Gomez ◽  
...  

ABSTRACT We previously demonstrated that mannoprotein (MP) from Cryptococcus neoformans (CnMP) stimulates interleukin-12 production by human monocytes, thus fostering a T-helper type 1 (Th1) protective anticryptococcal response. In this paper we show that CnMP was also able to induce a Candida albicans-directed protective Th1 response. This was demonstrated for mice immunized with CnMP by induction of a delayed-type hypersensitivity (DTH) reaction to C. albicans MP (CaMP) as well as induction of gamma interferon production by CD4+ and CD8+ splenic T cells stimulated in vitro with CaMP. CnMP-immunized mice were also partially protected from lethal systemic challenge with C. albicans, as shown by prolonged median survival times and decreased fungal burden in the kidney. Much evidence supports the validity of these cross-reactive and functional Th1 responses: (i) a non-cross-reactive C. albicans antigen, such as enolase, did not produce a DTH response to CaMP; (ii) passive adoptive transfer of T cells primed with CnMP induced a DTH reaction; (iii) C. neoformans extract elicited a DTH response to CaMP; and (iv) a monoclonal antibody (7H6) directed against a major and immunodominant T-cell-stimulatory 65-kDa MP (MP65) of C. albicans also recognized discrete 100-kDa constituents of C. neoformans extracts, as well as secretory constituents of the fungus. These results suggest the presence of common Th1 antigenic determinants in the mannoproteic material of C. neoformans and C. albicans epitopes, which should be considered in devising common strategies for immunoprophylactic or immunotherapeutic control of the fungi.


1997 ◽  
Vol 186 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Syamasundar V. Pakala ◽  
Michael O. Kurrer ◽  
Jonathan D. Katz

Autoimmune diabetes is caused by the CD4+, T helper 1 (Th1) cell-mediated apoptosis of insulin-producing β cells. We have previously shown that Th2 T cells bearing the same T cell receptor (TCR) as the diabetogenic Th1 T cells invade islets in neonatal nonobese diabetic (NOD) mice but fail to cause disease. Moreover, when mixed in excess and cotransferred with Th1 T cells, Th2 T cells could not protect NOD neonates from Th1-mediated diabetes. We have now found, to our great surprise, the same Th2 T cells that produced a harmless insulitis in neonatal NOD mice produced intense and generalized pancreatitis and insulitis associated with islet cell necrosis, abscess formation, and subsequent diabetes when transferred into immunocompromised NOD.scid mice. These lesions resembled allergic inflamation and contained a large eosinophilic infiltrate. Moreover, the Th2-mediated destruction of islet cells was mediated by local interleukin-10 (IL-10) production but not by IL-4. These findings indicate that under certain conditions Th2 T cells may not produce a benign or protective insulitis but rather acute pathology and disease. Additionally, these results lead us to question the feasibility of Th2-based therapy in type I diabetes, especially in immunosuppressed recipients of islet cell transplants.


2000 ◽  
Vol 191 (5) ◽  
pp. 847-858 ◽  
Author(s):  
Ryuta Nishikomori ◽  
Rolf O. Ehrhardt ◽  
Warren Strober

The differentiation of CD4+ T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor β2 (IL-12Rβ2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rβ2 chain. We reexamined such differentiation using IL-12Rβ2 chain transgenic mice. We found that CD4+ T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-γ production 10–100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rβ2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rβ2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4–driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-γ production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.


1995 ◽  
Vol 181 (5) ◽  
pp. 1755-1762 ◽  
Author(s):  
N G Jacobson ◽  
S J Szabo ◽  
R M Weber-Nordt ◽  
Z Zhong ◽  
R D Schreiber ◽  
...  

Interleukin 12 (IL-12) initiates the differentiation of naive CD4+ T cells to T helper type 1 (Th1) cells critical for resistance to intracellular pathogens such as Leishmania major. To explore the basis of IL-12 action, we analyzed induction of nuclear factors in Th1 cells. IL-12 selectively induced nuclear DNA-binding complexes that contained Stat3 and Stat4, recently cloned members of the family of signal transducers and activators of transcription (STATs). While Stat3 participates in signaling for several other cytokines, Stat4 was not previously known to participate in the signaling pathway for any natural ligand. The selective activation of Stat4 provides a basis for unique actions of IL-12 on Th1 development. Thus, this study presents the first identification of the early events in IL-12 signaling in T cells and of ligand activation of Stat4.


2001 ◽  
Vol 69 (10) ◽  
pp. 6064-6073 ◽  
Author(s):  
Cinzia Retini ◽  
Thomas R. Kozel ◽  
Donatella Pietrella ◽  
Claudia Monari ◽  
Francesco Bistoni ◽  
...  

ABSTRACT We previously demonstrated that the principal component of capsular material of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces interleukin-10 (IL-10) secretion from human monocytes. Here we report that encapsulation of the yeast with GXM is able to down-regulate interleukin-12 (IL-12) production by monocytes that would normally occur in the absence of encapsulation. This phenomenon appeared to be the result of inhibition of the phagocytic process by encapsulation with GXM as well as of negative signals such as IL-10 secretion produced by interaction of GXM with leukocytes. Decreased secretion of IL-12 correlated with decreased release of gamma interferon (IFN-γ) from T cells, suggesting a role for encapsulation with GXM in hindering a T helper type 1 (Th1) response. This is supported by the ability of encapsulation with GXM to limit increased expression of B7-1 costimulatory molecules that otherwise might limit IL-10 secretion. Endogenous IL-10 played a critical role in modulatory activity associated with encapsulation with GXM. Blocking IL-10 with monoclonal antibody to IL-10 resulted in increased (i) IL-12 secretion, (ii) IFN-γ release from T cells, and (iii) killing of C. neoformans by monocytes. These results suggest that encapsulation with GXM limits development of a protective Th1-type response, an inhibitory process in which IL-10 plays a critical role. Scavengers of GXM and/or IL-10 could be useful in a protective Th1-type response in patients with cryptococcosis.


Sign in / Sign up

Export Citation Format

Share Document