scholarly journals Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4.

1995 ◽  
Vol 181 (5) ◽  
pp. 1755-1762 ◽  
Author(s):  
N G Jacobson ◽  
S J Szabo ◽  
R M Weber-Nordt ◽  
Z Zhong ◽  
R D Schreiber ◽  
...  

Interleukin 12 (IL-12) initiates the differentiation of naive CD4+ T cells to T helper type 1 (Th1) cells critical for resistance to intracellular pathogens such as Leishmania major. To explore the basis of IL-12 action, we analyzed induction of nuclear factors in Th1 cells. IL-12 selectively induced nuclear DNA-binding complexes that contained Stat3 and Stat4, recently cloned members of the family of signal transducers and activators of transcription (STATs). While Stat3 participates in signaling for several other cytokines, Stat4 was not previously known to participate in the signaling pathway for any natural ligand. The selective activation of Stat4 provides a basis for unique actions of IL-12 on Th1 development. Thus, this study presents the first identification of the early events in IL-12 signaling in T cells and of ligand activation of Stat4.

2000 ◽  
Vol 191 (5) ◽  
pp. 847-858 ◽  
Author(s):  
Ryuta Nishikomori ◽  
Rolf O. Ehrhardt ◽  
Warren Strober

The differentiation of CD4+ T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor β2 (IL-12Rβ2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rβ2 chain. We reexamined such differentiation using IL-12Rβ2 chain transgenic mice. We found that CD4+ T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-γ production 10–100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rβ2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rβ2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4–driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-γ production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.


1993 ◽  
Vol 177 (6) ◽  
pp. 1797-1802 ◽  
Author(s):  
J P Sypek ◽  
C L Chung ◽  
S E Mayor ◽  
J M Subramanyam ◽  
S J Goldman ◽  
...  

Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a > 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.


2002 ◽  
Vol 70 (12) ◽  
pp. 6621-6627 ◽  
Author(s):  
Donatella Pietrella ◽  
Rosanna Mazzolla ◽  
Patrizia Lupo ◽  
Lucia Pitzurra ◽  
Maria Jesus Gomez ◽  
...  

ABSTRACT We previously demonstrated that mannoprotein (MP) from Cryptococcus neoformans (CnMP) stimulates interleukin-12 production by human monocytes, thus fostering a T-helper type 1 (Th1) protective anticryptococcal response. In this paper we show that CnMP was also able to induce a Candida albicans-directed protective Th1 response. This was demonstrated for mice immunized with CnMP by induction of a delayed-type hypersensitivity (DTH) reaction to C. albicans MP (CaMP) as well as induction of gamma interferon production by CD4+ and CD8+ splenic T cells stimulated in vitro with CaMP. CnMP-immunized mice were also partially protected from lethal systemic challenge with C. albicans, as shown by prolonged median survival times and decreased fungal burden in the kidney. Much evidence supports the validity of these cross-reactive and functional Th1 responses: (i) a non-cross-reactive C. albicans antigen, such as enolase, did not produce a DTH response to CaMP; (ii) passive adoptive transfer of T cells primed with CnMP induced a DTH reaction; (iii) C. neoformans extract elicited a DTH response to CaMP; and (iv) a monoclonal antibody (7H6) directed against a major and immunodominant T-cell-stimulatory 65-kDa MP (MP65) of C. albicans also recognized discrete 100-kDa constituents of C. neoformans extracts, as well as secretory constituents of the fungus. These results suggest the presence of common Th1 antigenic determinants in the mannoproteic material of C. neoformans and C. albicans epitopes, which should be considered in devising common strategies for immunoprophylactic or immunotherapeutic control of the fungi.


1995 ◽  
Vol 181 (2) ◽  
pp. 817-821 ◽  
Author(s):  
S Trembleau ◽  
G Penna ◽  
E Bosi ◽  
A Mortara ◽  
M K Gately ◽  
...  

T cells play a major role in the development of insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. Administration of interleukin 12 (IL-12), a key cytokine which guides the development of T helper type 1 (Th1) CD4+ T cells, induces rapid onset of IDDM in NOD, but not in BALB/c mice. Histologically, IL-12 administration induces massive infiltration of lymphoid cells, mostly T cells, in the pancreatic islets of NOD mice. CD4+ pancreas-infiltrating T cells, after activation by insolubilized anti T cell receptor antibody, secrete high levels of interferon gamma and low levels of IL-4. Therefore, IL-12 administration accelerates IDDM development in genetically susceptible NOD mice, and this correlates with increased Th1 cytokine production by islet-infiltrating cells. These results hold implications for the pathogenesis, and possibly for the therapy of IDDM and of other Th1 cell-mediated autoimmune diseases.


2007 ◽  
Vol 204 (8) ◽  
pp. 1749-1755 ◽  
Author(s):  
Yoshinori Naoe ◽  
Ruka Setoguchi ◽  
Kaori Akiyama ◽  
Sawako Muroi ◽  
Masahiko Kuroda ◽  
...  

Interferon γ (IFNγ) is the hallmark cytokine produced by T helper type 1 (Th1) cells, whereas interleukin (IL)-4 is the hallmark cytokine produced by Th2 cells. Although previous studies have revealed the roles of cytokine signaling and of transcription factors during differentiation of Th1 or Th2 cells, it is unclear how the exclusive expression pattern of each hallmark cytokine is established. The DNaseI hypersensitivity site IV within the mouse Il4 locus plays an important role in the repression of Il4 expression in Th1 cells, and it has been named the Il4 silencer. Using Cbfβ- or Runx3-deficient T cells, we show that loss of Runx complex function results in derepression of IL-4 in Th1 cells. Binding of Runx complexes to the Il4 silencer was detected in naive CD4+ T cells and Th1 cells, but not in Th2 cells. Furthermore, enforced expression of GATA-3 in Th1 cells inhibited binding of Runx complexes to the Il4 silencer. Interestingly, T cell–specific inactivation of the Cbfβ gene in mice led to elevated serum immunoglobulin E and airway infiltration. These results demonstrate critical roles of Runx complexes in regulating immune responses, at least in part, through the repression of the Il4 gene.


2001 ◽  
Vol 69 (10) ◽  
pp. 6064-6073 ◽  
Author(s):  
Cinzia Retini ◽  
Thomas R. Kozel ◽  
Donatella Pietrella ◽  
Claudia Monari ◽  
Francesco Bistoni ◽  
...  

ABSTRACT We previously demonstrated that the principal component of capsular material of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces interleukin-10 (IL-10) secretion from human monocytes. Here we report that encapsulation of the yeast with GXM is able to down-regulate interleukin-12 (IL-12) production by monocytes that would normally occur in the absence of encapsulation. This phenomenon appeared to be the result of inhibition of the phagocytic process by encapsulation with GXM as well as of negative signals such as IL-10 secretion produced by interaction of GXM with leukocytes. Decreased secretion of IL-12 correlated with decreased release of gamma interferon (IFN-γ) from T cells, suggesting a role for encapsulation with GXM in hindering a T helper type 1 (Th1) response. This is supported by the ability of encapsulation with GXM to limit increased expression of B7-1 costimulatory molecules that otherwise might limit IL-10 secretion. Endogenous IL-10 played a critical role in modulatory activity associated with encapsulation with GXM. Blocking IL-10 with monoclonal antibody to IL-10 resulted in increased (i) IL-12 secretion, (ii) IFN-γ release from T cells, and (iii) killing of C. neoformans by monocytes. These results suggest that encapsulation with GXM limits development of a protective Th1-type response, an inhibitory process in which IL-10 plays a critical role. Scavengers of GXM and/or IL-10 could be useful in a protective Th1-type response in patients with cryptococcosis.


1995 ◽  
Vol 25 (9) ◽  
pp. 2656-2660 ◽  
Author(s):  
Roberto Manetti ◽  
Francesco Annunziato ◽  
Ljiljana Tomasevic ◽  
Valeria Giannò ◽  
Paola Parronchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document