scholarly journals Developmental arrest of NK1.1+ T cell antigen receptor (TCR)-alpha/beta+ T cells and expansion of NK1.1+ TCR-gamma/delta+ T cell development in CD3 zeta-deficient mice.

1995 ◽  
Vol 182 (3) ◽  
pp. 891-895 ◽  
Author(s):  
H Arase ◽  
S Ono ◽  
N Arase ◽  
S Y Park ◽  
K Wakizaka ◽  
...  

The relationship between the structure of the T cell antigen receptor (TCR)-CD3 complex and development of NK1.1+ T cells was investigated. The TCR complex of freshly isolated NK1.1+ TCR-alpha/beta+ thymocytes contained CD3 zeta homodimers and CD zeta-FcR gamma heterodimers, whereas that of the majority of NK1.1- T cells did not contain FcR gamma. The function of CD3 zeta and FcR gamma in the development of NK1.1+ T cells was determined by analyzing CD3 zeta- and FcR gamma-deficient mice. The NK1.1+ T cells from wild-type and CD3 zeta-deficient mice had equal levels of CD3 expression. However, the development of NK1.1+ TCR-alpha/beta+ T cells was almost completely disrupted in thymus and spleen in CD3 zeta-deficient mice, whereas no alteration was observed in FcR gamma-deficient mice. In contrast, the number of novel NK1.1+ TCR-gamma/delta+ thymocytes expressing a surface phenotype similar to NK1.1+ TCR-alpha/beta+ thymocytes increased approximately six times in CD3 zeta-deficient mice. These findings establish the distinct roles of the CD3 zeta chain in the development of the following different thymic T cell compartments: NK1.1- TCR+, NK1.1+ TCR-alpha/beta+, and NK1.1+ TCR-gamma/delta+ thymocytes, which cannot be replaced by CD3 eta or FcR gamma chains.

1994 ◽  
Vol 179 (1) ◽  
pp. 365-369 ◽  
Author(s):  
H Ohno ◽  
S Ono ◽  
N Hirayama ◽  
S Shimada ◽  
T Saito

zeta and eta chains of the T cell antigen receptor (TCR) complex and the gamma chain of Fc receptors (FcR gamma) constitute a family of proteins important for the expression of, and signal transduction through, these receptors in hematopoietic cells. In zeta-deficient mice, TCR expression was reduced in most T cells. By contrast, CD8 alpha alpha + TCR-gamma/delta + intestinal intraepithelial lymphocytes in these mice expressed a normal level of TCR. Biochemical analysis of the TCR complex in these cells from zeta-deficient as well as normal mice revealed the predominant usage of FcR gamma. Furthermore, gamma/delta + T cells in epithelia of the skin and female reproductive organs from zeta-deficient mice also showed relatively high TCR expression, indicating the usage of FcR gamma. These observations demonstrate the preferential usage of FcR gamma by gamma/delta + T cells localized in epithelia of normal mice.


2005 ◽  
Vol 25 (6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Souad Rahmouni ◽  
Torkel Vang ◽  
Andres Alonso ◽  
Scott Williams ◽  
Marianne van Stipdonk ◽  
...  

ABSTRACT The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an ∼72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this “parasynaptic” location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.


Sign in / Sign up

Export Citation Format

Share Document