scholarly journals Positive Selection of γδ CTL by TL Antigen Expressed in the Thymus

1996 ◽  
Vol 184 (6) ◽  
pp. 2175-2184 ◽  
Author(s):  
Kunio Tsujimura ◽  
Toshitada Takahashi ◽  
Akimichi Morita ◽  
Hitomi Hasegawa-Nishiwaki ◽  
Shigeru Iwase ◽  
...  

To elucidate the function of the mouse TL antigen in the thymus, we have derived two TL transgenic mouse strains by introducing Tlaa-3 of A strain origin with its own promoter onto a C3H background with no expression of TL in the thymus. These transgenic mouse strains, both of which express high levels of Tlaa-3-TL antigen in their thymus, were analyzed for their T cell function with emphasis on cytotoxic T lymphocyte (CTL) generation. A T cell response against TL was induced in Tg.Tlaa-3-1, Tg.Tlaa-3-2, and control C3H mice by skin grafts from H-2Kb/T3b transgenic mice, Tg.Con.3-1, expressing T3b-TL ubiquitously. Spleen cells from mice that had rejected the T3b-TL positive skin grafts were restimulated in vitro with Tg.Con.3-1 irradiated spleen cells. In mixed lymphocyte cultures (MLC), approximately 20% and 15% of Thy-1+ T cells derived from Tg.Tlaa-3-1 and Tg.Tlaa-3-2, respectively, expressed TCRγδ, whereas almost all those from C3H expressed TCRαβ. The MLC from Tg.Tlaa-3-2 and C3H demonstrated high CTL activity against TL, while those from Tg.Tlaa-3-1 had little or none. The generation of γδ CTL recognizing TL in Tg.Tlaa-3-2, but not C3H mice, was confirmed by the establishment of CTL clones. A total of 14 γδ CTL clones were established from Tg.Tlaa-3-2, whereas none were obtained from C3H. Of the 14 γδ CTL clones, 8 were CD8+ and 6 were CD4−CD8− double negative. The CTL activity of all these clones was TL specific and inhibited by anti-TL, but not by anti-H-2 antibodies, demonstrating that they recognize TL directly without antigen presentation by H-2. The CTL activity was blocked by antibodies to TCRγδ and CD3, and also by antibodies to CD8α and CD8β in CD8+ clones, showing that the activity was mediated by TCRγδ and coreceptors. The thymic origin of these γδ CTL clones was indicated by the expression of Thy-1 and Ly-1 (CD5), and also CD8αβ heterodimers in CD8+ clones on their surfaces and by the usage of TCR Vγ4 chains in 12 of the 14 clones. Taken together, these results suggest that Tlaa-3-TL antigen expressed in the thymus engages in positive selection of a sizable population of γδ T cells.

1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


1993 ◽  
Vol 177 (4) ◽  
pp. 1061-1070 ◽  
Author(s):  
F B Wells ◽  
Y Tatsumi ◽  
J A Bluestone ◽  
S M Hedrick ◽  
J P Allison ◽  
...  

Recent evidence suggests that T cells expressing gamma/delta antigen receptors (T cell receptor [TCR]) are subject to positive selection during development. We have shown that T cells expressing a class I major histocompatibility complex (MHC)-specific gamma/delta TCR transgene (tg) are not positively selected in class I MHC-deficient, beta 2-microglobulin (beta 2m) gene knockout mice (tg+ beta 2m-). In this report, we examine phenotypic and functional parameters of gamma/delta positive selection in this transgenic model system. TCR-gamma/delta tg+ thymocytes of mature surface phenotype (heat stable antigen-, CD5hi) were found in beta 2m+ but not in beta 2m- mice. Moreover, subsets of tg+ thymocytes with the phenotype of activated T cells (interleukin [IL]2R+, CD44hi, or Mel-14lo) were also present only in the beta 2m+ mice. Cyclosporine A, which blocks positive selection of TCR-alpha/beta T cells, also inhibited gamma/delta tg+ T cell development. These results support the idea that positive selection of TCR-gamma/delta requires active TCR-mediated signal transduction. Whereas tg+ beta 2m+ thymocytes produced IL-2 and proliferated when stimulated by alloantigen, TCR engagement of tg+ beta 2m- thymocytes by antigen induced IL-2R expression but was uncoupled from the signal transduction pathway leading to IL-2 production and autocrine proliferation. Overall, these results demonstrate significant parallels between gamma/delta and alpha/beta lineage development, and suggest a general role for TCR signaling in thymic maturation.


1990 ◽  
Vol 1 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Hung Sia Teh ◽  
Hiroyuki Kishi ◽  
Bernadette Scott ◽  
Peter Borgulya ◽  
Harald Von Boehmer ◽  
...  

The ontogeny of T cells in T-cell receptor (TCR) transgenic mice, which express a transgenicαβheterodimer, specific for the male (H-Y) antigen in association with H-2Db, was determined. The transgenicαchain was expressed on about 10% of the fetal thymocytes on day 14 of gestation. About 50% of day-15 fetal thymocytes expressed bothαandβtranschains and virtually all fetal thymocytes expressed the transgenicαβheterodimer by day 17. The early expression of the transgenic TCR on CD4-8-thymocytes prevented the development ofγδcells, and led to accelerated growth of thymocytes and an earlier expression of CD4 and CD8 molecules. Up to day 17, no significant differences in T-cell development could be detected between female and male thymuses. By day 18 of gestation, the male transgenic thymus contained more CD4-8-thymocytes than the female transgenic thymus. The preponderance of CD4-8-thymocytes in the male transgenic thymus increased until birth and was a consequence of the deletion of the CD4+8+thymocytes and their CD4-8+precursors. By the time of birth, the male transgenic thymus contained half the number of cells as the female transgenic thymus. The deletion of autospecific precursor cells in the male transgenic mouse began only at day 18 of gestation, despite the fact that the ligand could already be detected by day 16.The preferential accumulation of CD4-8+T cells, which expressed a high density of the transgenic TCR, occurred only after birth and was .obvious in 6-week-old female thymus. These data support the hypothesis that the positive selection of T cells expressing this transgenic heterodimer may involve two steps, i.e., the commitment of CD4+8+thymocytes to the CD4-8+lineage following the interaction of the transgenic TCR with restricting major histocompatibility molecules, followed by a slow conversion of CD4+8+thymocytes into CD4-8+T cells.In normal mice, the precursors of CD+4+8 and single positive thymocytes have the CD4-8-CD3-J11d+(or M1/69+) phenotype. Because of the early expression of the transgenicαβheterodimer, this population was not detected in adult transgenic mice. All CD4-8-M1/ 69+cells expressed the transgenic receptor associated with CD3 and could be readily grown in media containing T-cell lectins and interleukin 2.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4553-4553
Author(s):  
Christopher S Seet ◽  
Chongbin He ◽  
Michael Bethune ◽  
Suwen Li ◽  
Brent Chick ◽  
...  

Abstract Engineered adoptive immunotherapies have shown unprecedented activity in the treatment of cancer and chronic viral infections. Current approaches rely on individualized ex vivo genetic modification of autologous T cells due to the risk of graft-versus-host disease from allogeneic T cells. These processes furthermore require activation and prolonged expansion of T cells, which may reduce in vivo efficacy and persistence. Direct in vitro differentiation of engineered T cells from hematopoietic stem and progenitor cells (HSPCs) may overcome these problems by permitting the suppression of endogenous TCR expression through allelic exclusion, and the de novo generation of naïve antigen-specific T cells. Existing methods of in vitro human T cell differentiation are subject to wide experimental variability and do not adequately support the positive selection of immature T cell precursors to mature T cells, and thus have not been suitable for clinical-scale production of engineered T cells. We report here the preclinical development of an artificial thymic organoid (ATO) system using off-the-shelf, serum-free components and a standardized stromal cell line that supports highly efficient in vitro differentiation and positive selection of native and TCR-engineered human T cells from cord blood (CB), bone marrow, and mobilized peripheral blood CD34+ HSPCs, and purified CD34+CD38- hematopoietic stem cells. ATOs closely recapitulated thymic T cell commitment and differentiation, resulting in greater than 80% CD7+CD5+ T-lineage cells and 50% CD4+CD8+ double positive (DP) T cell precursors by 4 weeks. By 6 weeks, 30-40% of ATO cells were CD3+TCRαβ+ T cells, of which 20-30% were mature CD8 single positive (SP) T cells. CD4SP cells were generated at a lower frequency and later in culture (2-14% of CD3+TCRαβ+ cells). ATO-derived T cells exhibited a naïve CD45RA+CD27+CCR7+CD62L+ phenotype, a diverse, thymic-like TCR repertoire, and robust TCR-dependent cytokine release and proliferation. Transduction of CB CD34+ HSPCs with an HLA-A*02:01-restricted αβ TCR specific for NY-ESO-1 resulted in a markedly increased cell output per ATO (>400-fold, relative to input HSPCs) and enhanced generation of naïve CD3+TCRαβ+CD8αβ+ conventional T cells, the majority of which were antigen-specific by tetramer staining. Positive selection of TCR-engineered naïve T cells could be further enhanced by expression of cognate HLA-A*02:01 in ATO stromal cells. ATO-derived TCR-engineered T cells exhibited a near complete lack of endogenous TCR Vβ expression, consistent with induction of allelic exclusion by the exogenous TCR during T cell development. ATO-derived engineered T cells underwent antigen-specific cytotoxic priming, polyfunctional cytokine release, and proliferation in response to artificial APCs; and exhibited antigen-specific killing of NY-ESO-1+ tumor cells in vitro and in vivo. ATOs thus present a highly efficient off-the-shelf platform for the generation of clinically relevant numbers of naïve and potentially non-alloreactive engineered T cells for adoptive immunotherapy. Clinical translation of the ATO system will be aided by its simplicity, scalability, use of serum-free components, and compatibility with irradiated stromal cells. In addition, genetic manipulation of stem or stromal cell components can be easily incorporated into the system to further enhance downstream T cell engraftment or function. Disclosures Seet: Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property. Montel-Hagen:Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property. Crooks:Kite Pharma: Patents & Royalties: Kite Pharma holds an exclusive license to certain intellectual property, Research Funding.


1989 ◽  
Vol 170 (1) ◽  
pp. 135-143 ◽  
Author(s):  
N S Liao ◽  
J Maltzman ◽  
D H Raulet

We report here a mAb, 14-2, reactive with TCRs that include V beta 14. The frequency of V beta 14+ T cells varies with CD4 and CD8 subset and is controlled by the H-2 genes. Thus CD8+ T cells from H-2b mice include approximately 2.3% V beta 14+ T cells while CD8+ T cells from mice expressing K kappa include greater than 8% V beta 14+ T cells. In all strains examined, 7-8% of CD4+ T cells express V beta 14. The frequent usage of V beta 14 in CD8+ T cells of K kappa-expressing mice is a result of preferential positive selection of V beta 14+ CD8+ T cells as demonstrated by analysis of radiation chimeras. These studies demonstrate that H-2-dependent positive selection occurs in unmanipulated mice. Furthermore, the results imply that positive selection, and possibly H-2 restriction, can be strongly influenced by a V beta domain, with some independence from the beta-junctional sequence and alpha chain.


1999 ◽  
Vol 96 (20) ◽  
pp. 11470-11475 ◽  
Author(s):  
J. Zerrahn ◽  
A. Volkmann ◽  
M. C. Coles ◽  
W. Held ◽  
F. A. Lemonnier ◽  
...  

2021 ◽  
Vol 118 (37) ◽  
pp. e2100542118
Author(s):  
Balázs Koncz ◽  
Gergő M. Balogh ◽  
Benjamin T. Papp ◽  
Leó Asztalos ◽  
Lajos Kemény ◽  
...  

Adaptive immune recognition is mediated by the binding of peptide–human leukocyte antigen complexes by T cells. Positive selection of T cells in the thymus is a fundamental step in the generation of a responding T cell repertoire: only those T cells survive that recognize human peptides presented on the surface of cortical thymic epithelial cells. We propose that while this step is essential for optimal immune function, the process results in a defective T cell repertoire because it is mediated by self-peptides. To test our hypothesis, we focused on amino acid motifs of peptides in contact with T cell receptors. We found that motifs rarely or not found in the human proteome are unlikely to be recognized by the immune system just like the ones that are not expressed in cortical thymic epithelial cells or not presented on their surface. Peptides carrying such motifs were especially dissimilar to human proteins. Importantly, we present our main findings on two independent T cell activation datasets and directly demonstrate the absence of naïve T cells in the repertoire of healthy individuals. We also show that T cell cross-reactivity is unable to compensate for the absence of positively selected T cells. Additionally, we show that the proposed mechanism could influence the risk for different infectious diseases. In sum, our results suggest a side effect of T cell positive selection, which could explain the nonresponsiveness to many nonself peptides and could improve the understanding of adaptive immune recognition.


Sign in / Sign up

Export Citation Format

Share Document