scholarly journals An Isotype-specific Activator of Major Histocompatibility Complex (MHC) Class II Genes That Is Independent of Class II Transactivator

1997 ◽  
Vol 185 (11) ◽  
pp. 1885-1895 ◽  
Author(s):  
John Douhan ◽  
Rebecca Lieberson ◽  
Joan H.M. Knoll ◽  
Hong Zhou ◽  
Laurie H. Glimcher

Patients with one type of major histocompatibility complex class II combined immunodeficiency have mutations in a gene termed class II transactivator (CIITA), which coordinately controls the transcription of the three major human class II genes, HLA-DR, -DQ, and -DP. However, the experimentally derived B-lymphoblastoid cell line, clone 13, expresses high levels of HLADQ in the absence of HLA-DR and HLA-DP, despite its mapping by complementation analysis to this group. It was possible that one of the clone 13 CIITA alleles bore a mutation that allowed HLA-DQ, but not HLA-DR or -DP transcription. Alternatively, another factor, distinct from CIITA, might control HLA-DQ expression. We report here that ectopic expression of CIITA cDNAs derived by reverse transcriptase polymerase chain reaction from clone 13 do not restore expression of HLA-DQ in another CIITA-deficient cell line, RJ2.2.5. In addition, no CIITA protein is detectable in clone 13 nuclear extracts. In contrast, somatic cell fusion between clone 13 and RJ2.2.5 restored expression of the HLA-DQ haplotype encoded by the RJ2.2.5 DQB gene. Taken together, these data demonstrate the existence of an HLA-DQ isotype-specific trans-acting factor, which functions independently of CIITA.

2002 ◽  
Vol 22 (14) ◽  
pp. 5019-5026 ◽  
Author(s):  
Rajini Mudhasani ◽  
Joseph D. Fontes

ABSTRACT The class II transactivator (CIITA) is the key regulator of major histocompatibility complex (MHC) class II gene transcription. We demonstrate here that CIITA requires the ATPase subunit of an hSWI/SNF complex, brahma-related gene 1 (BRG-1), to activate transcription. When introduced into a cell line lacking BRG-1, CIITA was unable to activate cellular MHC class II genes. Reexpression of the wild-type but not an ATP-binding-deficient BRG-1 protein in this cell line restored the ability of CIITA to transactivate transcription of MHC class II genes. Interestingly, when the activity of CIITA was assayed in the BRG-1-deficient cell line by using a plasmid-based reporter assay, BRG-1 was not required for transcriptional activation, suggesting that the chromatin structure on the plasmid is such that BRG-1 is not necessary. Coimmunoprecipitation experiments were performed to determine if BRG-1 and CIITA proteins associate with each other in cells. We found that the two proteins coimmunoprecipitate and that amino acids 1 to 140 of CIITA are sufficient for binding. Taken together, these data suggest that BRG-1 and, very likely, an hSWI/SNF complex are required for transcription of MHC class II genes. The complex is likely recruited to MHC class II promoters, at least in part, by interaction with CIITA.


1995 ◽  
Vol 182 (5) ◽  
pp. 1517-1525 ◽  
Author(s):  
H T Lu ◽  
J L Riley ◽  
G T Babcock ◽  
M Huston ◽  
G R Stark ◽  
...  

Interferon (IFN) gamma, a cardinal proinflammatory cytokine, induces expression of the gene products of the class II locus of the major histocompatibility complex (MHC), whereas IFN-alpha or -beta suppresses MHC class II expression. The mechanism of IFN-beta-mediated MHC class II inhibition has been unclear. Recently, a novel factor termed class II transactivator (CIITA) has been identified as essential for IFN-gamma-induced MHC class II transcription. We studied the status of IFN-gamma-induced CIITA messenger RNA (mRNA) accumulation and CIITA-driven transactivation in IFN-beta-treated cells and used cell lines that had defined defects in the type I IFN response pathway to address the roles of IFN signaling components in the inhibition of MHC class II induction. IFN-beta treatment did not suppress IFN-gamma-induced accumulation of CIITA mRNA. After cells were stably transfected with CIITA, endogenous MHC class II genes were constitutively expressed, and MHC class II promoters, delivered by transfection, were actively transcribed in CIITA-expressing cells. Expression of these promoters was significantly impaired by pretreatment with IFN-beta. These results suggest that IFN-beta acts downstream of CIITA mRNA accumulation, and acts in part by reducing the functional competence of CIITA for transactivating MHC class II promoters. IFN stimulated gene factor 3 (ISGF3) gamma was essential for IFN-beta to mediate inhibition of MHC class II induction, regardless of whether MHC class II transcription was stimulated by IFN-gamma or directly by CIITA expression. Results of these experiments suggest that inhibition of MHC class II in IFN-beta-treated cells requires expression of gene(s) directed by the ISGF3-IFN-stimulated response element pathway, and that these gene product(s) may act by blocking CIITA-driven transcription of MHC class II promoters.


1990 ◽  
Vol 10 (3) ◽  
pp. 965-971
Author(s):  
M Kobr ◽  
W Reith ◽  
C Herrero-Sanchez ◽  
B Mach

The regulation of major histocompatibility complex (MHC) class II gene expression is a key feature of the control of normal and abnormal immune responses. In humans, class II alpha - and beta-chain genes are organized in a multigene family with three distinct subregions, HLA-DR, -DQ, and -DP. The regulation of these genes is generally coordinated, and their promoters contain highly conserved motifs, in particular the X and Y boxes. We have identified five distinct proteins that bind to specific DNA sequences within the first 145 base pairs of the HLA-DR promoter, a segment known to be functionally essential for class II gene regulation. Among these, RF-X is of special interest, since mutants affected in the regulation of MHC class II gene expression have a specific defect in RF-X binding. Unexpectedly, RF-X displays a characteristic gradient of binding affinities for the X boxes of three alpha-chain genes (DRA greater than DPA much greater than DQA). The same observation was made with recombinant RF-X. We also describe a novel factor, NF-S, which bound to the spacer region between the X and Y boxes of class II promoters. NF-S exhibited a reverse gradient of affinity compared with RF-X (DQA greater than DPA much greater than DRA). As expected, RF-X bound well to the mouse IE alpha promoter, while NF-S bound well to IA alpha. The drastic differences in the binding of RF-X and NF-S to different MHC class II promoters contrasts with the coordinate regulation of HLA-DR, -DQ, and -DP genes.


1990 ◽  
Vol 10 (3) ◽  
pp. 965-971 ◽  
Author(s):  
M Kobr ◽  
W Reith ◽  
C Herrero-Sanchez ◽  
B Mach

The regulation of major histocompatibility complex (MHC) class II gene expression is a key feature of the control of normal and abnormal immune responses. In humans, class II alpha - and beta-chain genes are organized in a multigene family with three distinct subregions, HLA-DR, -DQ, and -DP. The regulation of these genes is generally coordinated, and their promoters contain highly conserved motifs, in particular the X and Y boxes. We have identified five distinct proteins that bind to specific DNA sequences within the first 145 base pairs of the HLA-DR promoter, a segment known to be functionally essential for class II gene regulation. Among these, RF-X is of special interest, since mutants affected in the regulation of MHC class II gene expression have a specific defect in RF-X binding. Unexpectedly, RF-X displays a characteristic gradient of binding affinities for the X boxes of three alpha-chain genes (DRA greater than DPA much greater than DQA). The same observation was made with recombinant RF-X. We also describe a novel factor, NF-S, which bound to the spacer region between the X and Y boxes of class II promoters. NF-S exhibited a reverse gradient of affinity compared with RF-X (DQA greater than DPA much greater than DRA). As expected, RF-X bound well to the mouse IE alpha promoter, while NF-S bound well to IA alpha. The drastic differences in the binding of RF-X and NF-S to different MHC class II promoters contrasts with the coordinate regulation of HLA-DR, -DQ, and -DP genes.


1998 ◽  
Vol 18 (11) ◽  
pp. 6777-6783 ◽  
Author(s):  
Androniki Kretsovali ◽  
Theodora Agalioti ◽  
Charalambos Spilianakis ◽  
Eleni Tzortzakaki ◽  
Menie Merika ◽  
...  

ABSTRACT The class II transactivator (CIITA) is a key regulatory factor that controls expression of the major histocompatibility complex (MHC) class II genes that are essential components for antigen presentation and thus regulation of the immune response. We show here that the adenovirus E1A protein interferes with the action of CIITA and inhibits both B-cell-specific and gamma interferon (IFN-γ)-induced expression of MHC class II promoters. Transfection studies provide evidence for the functional role of the CREB-binding protein (CBP) in IFN-γ and CIITA-mediated MHC class II promoter activation. We demonstrate that the N-terminally located transcription activation domain of CIITA physically interacts with both the N-terminal and the E1A-binding (C/H3) regions of CBP. These results suggest the involvement of a multisubunit complex, which contains the gene-specific coactivator CIITA and the versatile coactivator CBP, in MHC class II gene regulation, which may be responsible for both high-level expression and modulation by different signaling pathways.


1990 ◽  
Vol 10 (8) ◽  
pp. 3906-3916
Author(s):  
L Zhu ◽  
P P Jones

The invariant chain (Ii) is a glycoprotein coexpressed with the major histocompatibility complex (MHC) class II antigens. Although Ii is encoded by a single gene unlinked to the MHC gene complex, Ii and MHC class II appear to have similar patterns of tissue specific expression and generally are coordinately regulated by cytokines. Here we present evidence that transcription of the murine Ii gene is controlled by multiple cis-acting elements. The 5' regulatory region of the Ii gene appears to be combined of conserved class II regulatory elements with promoter elements commonly found in other eucaryotic genes. A region containing characteristic class II promoter elements (H box, X box, and a modified Y box) serves as an upstream enhancer in the Ii gene and might contribute to the coexpression of MHC class II and Ii genes. A series of positive control elements, the kappa B element, Sp1-binding site, and CCAAT box, are present in the Ii promoter and apparently serve distinct regulatory functions. The kappa B site in the Ii gene is a cell type-specific element, contributing to expression in a B-cell line but not in a fibroblast cell line, and the Sp1 site is required by the H-X-Y' enhancer element to stimulate promoter activity. In addition, an Ii enhancer in the first intron that specifically stimulates its own promoter has been identified. Our results suggest that a sequence match between enhancers and certain promoter elements is critical.


1990 ◽  
Vol 10 (8) ◽  
pp. 3906-3916 ◽  
Author(s):  
L Zhu ◽  
P P Jones

The invariant chain (Ii) is a glycoprotein coexpressed with the major histocompatibility complex (MHC) class II antigens. Although Ii is encoded by a single gene unlinked to the MHC gene complex, Ii and MHC class II appear to have similar patterns of tissue specific expression and generally are coordinately regulated by cytokines. Here we present evidence that transcription of the murine Ii gene is controlled by multiple cis-acting elements. The 5' regulatory region of the Ii gene appears to be combined of conserved class II regulatory elements with promoter elements commonly found in other eucaryotic genes. A region containing characteristic class II promoter elements (H box, X box, and a modified Y box) serves as an upstream enhancer in the Ii gene and might contribute to the coexpression of MHC class II and Ii genes. A series of positive control elements, the kappa B element, Sp1-binding site, and CCAAT box, are present in the Ii promoter and apparently serve distinct regulatory functions. The kappa B site in the Ii gene is a cell type-specific element, contributing to expression in a B-cell line but not in a fibroblast cell line, and the Sp1 site is required by the H-X-Y' enhancer element to stimulate promoter activity. In addition, an Ii enhancer in the first intron that specifically stimulates its own promoter has been identified. Our results suggest that a sequence match between enhancers and certain promoter elements is critical.


1990 ◽  
Vol 64 (04) ◽  
pp. 564-568 ◽  
Author(s):  
Lloyd E Lippert ◽  
Lyman Mc A Fisher ◽  
Lawrence B Schook

SummaryApproximately 14% of transfused hemophiliacs develop an anti-factor VIII inhibitory antibody which specifically neutralizes factor VIII procoagulant activity. In this study an association of the major histocompatibility complex (MHC) with inhibitor antibody formation was evaluated by restriction fragment length polymorphism (RFLP) analysis using BamHI, EcoRI, HindII, PstI, PvuII and TaqI digested genomic DNA probed with DP beta, DQ alpha, DQ beta and DR beta class II MHC gene probes. The RFLP patterns for 16 non-inhibitor and 11 inhibitor hemophiliac patients were analyzed. These 24 enzyme:probe combinations generated 231 fragments. Fifteen (15) fragments associated with the inhibitor phenotype; odds ratios ranged from 5.1 to 45 and lower bounds of 95% confidence intervals were > 1.000 for all 15 fragments. Five (5) fragments associated with non-inhibitors, with odds ratios ranging from 6.4 to 51.7. This report establishes a MHC related genetic basis for the inhibitor phenotype. No statistically significant differences in the distribution of serologically defined HLA-DR phenotypes were observed between the inhibitor and non-inhibitor groups.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


Sign in / Sign up

Export Citation Format

Share Document