scholarly journals MPYS, a Novel Membrane Tetraspanner, Is Associated with Major Histocompatibility Complex Class II and Mediates Transduction of Apoptotic Signals

2008 ◽  
Vol 28 (16) ◽  
pp. 5014-5026 ◽  
Author(s):  
Lei Jin ◽  
Paul M. Waterman ◽  
Karen R. Jonscher ◽  
Cindy M. Short ◽  
Nichole A. Reisdorph ◽  
...  

ABSTRACT Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (∼140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.

1997 ◽  
Vol 186 (4) ◽  
pp. 549-560 ◽  
Author(s):  
José A. Villadangos ◽  
Richard J. Riese ◽  
Christoph Peters ◽  
Harold A. Chapman ◽  
Hidde L. Ploegh

Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II–peptide complexes and, second, that most class II–associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.


1997 ◽  
Vol 185 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Guangming Zhong ◽  
Paola Romagnoli ◽  
Ronald N. Germain

Leucine-based signals in the cytoplasmic tail of invariant chain (Ii) control targeting of newly synthesized major histocompatibility complex class II molecules to the endocytic pathway for acquisition of antigenic peptides. Some protein determinants, however, do not require Ii for effective class II presentation, although endocytic processing is still necessary. Here we demonstrate that a dileucine-based signal in the cytoplasmic tail of the class II β chain is critical for this Ii-independent presentation. Elimination or mutation of this signal reduces the rate of re-entry of mature surface class II molecules into the endocytic pathway. Antigen presentation controlled by this signal does not require newly synthesized class II molecules and appears to involve determinants requiring only limited proteolysis for exposure, whereas the opposite is true for Ii-dependent determinants. This demonstrates that related leucine-based trafficking signals in Ii and class II control the functional presentation of protein determinants with distinct processing requirements, suggesting that the peptide binding sites of newly synthesized versus mature class II molecules are made available for antigen binding in distinct endocytic compartments under the control of these homologous cytoplasmic signals. This permits capture of protein fragments produced optimally under distinct conditions of pH and proteolytic activity.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 808-817 ◽  
Author(s):  
Martine J. van Vugt ◽  
Monique J. Kleijmeer ◽  
Tibor Keler ◽  
Ingrid Zeelenberg ◽  
Marc A. van Dijk ◽  
...  

Abstract Within multi-subunit Ig receptors, the FcR γ-chain immunoreceptor tyrosine-based activation motif (ITAM) plays a crucial role in enabling antigen presentation. This process involves antigen-capture and targeting to specific degradation and major histocompatibility complex (MHC) class II loading compartments. Antigenic epitopes are then presented by MHC class II molecules to specific T cells. The high-affinity receptor for IgG, hFcγRIa, is exclusively expressed on myeloid lineage cells and depends on the FcR γ-chain for surface expression, efficient ligand binding, and most phagocytic effector functions. However, we show in this report, using the IIA1.6 cell model, that hFcγRIa can potentiate MHC class II antigen presentation, independently of a functional FcR γ-chain ITAM. Immunoelectron microscopic analyses documented hFcγRIa -chain/rabbit IgG-Ovalbumin complexes to be internalized and to migrate via sorting endosomes to MHC class II-containing late endosomes. Radical deletion of the hFcγRIa -chain cytoplasmic tail did not affect internalization of rabbit IgG-Ovalbumin complexes. Importantly, however, this resulted in diversion of receptor-ligand complexes to the recycling pathway and decreased antigen presentation. These results show the hFcγRIa cytoplasmic tail to contain autonomous targeting information for intracellular trafficking of receptor-antigen complexes, although deficient in canonical tyrosine- or dileucine-targeting motifs. This is the first documentation of autonomous targeting by a member of the multichain FcR family that may critically impact the immunoregulatory role proposed for hFcγRIa (CD64).


1998 ◽  
Vol 188 (9) ◽  
pp. 1633-1640 ◽  
Author(s):  
Abdel Rahim A. Hamad ◽  
Sean M. O'Herrin ◽  
Michael S. Lebowitz ◽  
Ananth Srikrishnan ◽  
Joan Bieler ◽  
...  

The interaction of the T cell receptor (TCR) with its cognate peptide–major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a primary event during T cell activation. Here we used a dimeric IEk-MCC molecule to study its capacity to activate antigen-specific T cells and to directly analyze the role of CD4 in physically stabilizing the TCR–MHC interaction. Dimeric IEk-MCC stably binds to specific T cells. In addition, immobilized dimeric IEk-MCC can induce TCR downregulation and activate antigen-specific T cells more efficiently than anti-CD3. The potency of the dimeric IEk-MCC is significantly enhanced in the presence of CD4. However, CD4 does not play any significant role in stabilizing peptide-MHC–TCR interactions as it fails to enhance binding of IEk-MCC to specific T cells or influence peptide-MHC–TCR dissociation rate or TCR downregulation. Moreover, these results indicate that dimerization of peptide-MHC class II using an IgG molecular scaffold significantly increases its binding avidity leading to an enhancement of its stimulatory capacity while maintaining the physiological properties of cognate peptide–MHC complex. These peptide-MHC–IgG chimeras may, therefore, provide a novel approach to modulate antigen-specific T cell responses both in vitro and in vivo.


1999 ◽  
Vol 67 (8) ◽  
pp. 4048-4054 ◽  
Author(s):  
Claire Forestier ◽  
Edgardo Moreno ◽  
Stéphane Méresse ◽  
Armelle Phalipon ◽  
Daniel Olive ◽  
...  

ABSTRACT Lipopolysaccharide (LPS), a major amphiphilic molecule located at the outer membrane of gram-negative bacteria, is a potent antigen known to induce specific humoral immune responses in infected mammals. LPS has been described as a polyclonal activator of B lymphocytes, triggering the secretion of antibodies directed against distinct sugar epitopes of the LPS chain. But, how LPS is handled by B cells remains to be fully understood. This task appears to be essential for a better knowledge of the anti-LPS humoral immune response. In this study, we examine the internalization of LPS and its interaction with antigen-presenting major histocompatibility complex (MHC) class II molecules in murine and human B-cell lines. By use of immunofluorescence, we observe that structurally different LPSs fromBrucella and Shigella strains accumulate in an intracellular compartment enriched in MHC class II molecules. By use of immunoprecipitation, we illustrate that only Brucella abortus LPS associates with MHC class II molecules in a haplotype-independent manner. Taken together, these results raise the possibility that B. abortus LPS may play a role in T-cell activation.


2000 ◽  
Vol 192 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Nathan J. Felix ◽  
W. June Brickey ◽  
Robert Griffiths ◽  
Jinghua Zhang ◽  
Luc Van Kaer ◽  
...  

The role played by antigenic peptides bound to major histocompatibility complex (MHC) molecules is evaluated with H2-DMα−/− mice. These mice have predominantly class II–associated invariant chain peptide (CLIP)-, not antigenic peptide–bound, MHC class II. H2-DMα−/− donor heart grafts survived three times longer than wild-type grafts and slightly longer than I-Aβb−/− grafts. Proliferative T cell response was absent, and cytolytic response was reduced against the H2-DMα−/− grafts in vivo. Residual cytolytic T cell and antibody responses against intact MHC class I lead to eventual rejection. Removal of both H2-DMα and β2-microglobulin (β2m) in cardiac grafts lead to greater (8–10 times) graft survival, whereas removal of β2m alone did not have any effect. These results demonstrate the significance of peptide rather than just allogeneic MHC, in eliciting graft rejection.


1991 ◽  
Vol 174 (4) ◽  
pp. 945-948 ◽  
Author(s):  
L Adorini ◽  
J Moreno ◽  
F Momburg ◽  
G J Hämmerling ◽  
J C Guéry ◽  
...  

Antigen-presenting cells (APC) transfected with a construct encoding the hen egg-white lysozyme (HEL) amino acid sequence 1-80 constitutively present HEL peptides complexed to major histocompatibility complex (MHC) class II molecules to specific T cell hybridomas, indicating that endogenous cellular antigens can be efficiently presented to class II-restricted T cells. Here we show that exogenous peptide competitors added to HEL-transfected APC can inhibit the presentation of endogenous HEL peptides to class II-restricted T cells. The inhibition is specific for the class II molecule binding the competitor peptide, and it affects to the same extent presentation of exogenous or endogenous HEL peptides. These results, demonstrating that an exogenous competitor can inhibit class II-restricted T cell activation induced by endogenous as well as exogenous antigen, suggest lack of strict compartmentalization between endogenous and exogenous pathways of antigen presentation. Since autoreactive T cells may recognize endogenous, as well as exogenous antigens, the results have implications for the treatment of autoimmune diseases by MHC blockade.


1994 ◽  
Vol 179 (2) ◽  
pp. 763-768 ◽  
Author(s):  
P André ◽  
J C Cambier ◽  
T K Wade ◽  
T Raetz ◽  
W F Wade

Class II major histocompatibility complex encoded proteins (MHC class II or Ia molecules) are principal plasma membrane proteins involved in activation of both B and T cells during antigen-driven immune responses. Recent data indicate that class II molecules are more than simply recognition elements that provide a ligand for the T cell antigen receptor. Changes in B cell physiology that follow class II binding are now recognized as being required not only for the induction of T cell activation, but also for B cell activation and proliferation. It is interesting to note that class II molecules appear to transduce signals via two distinct mechanisms depending upon the differentiative state of the B cell on which they are expressed. While one of these pathways, involving cAMP generation and protein kinase C localization in the cytoskeletal/nuclear compartment, is seen in resting B cells, the second is seen in primed B cells and involves tyrosine kinase activation, inositol lipid hydrolysis, and Ca2+ mobilization. Use of this pathway is correlated with ability of class II to transduce signals leading to B cell proliferation. To begin to address the molecular basis of this unique, activation-dependent, differential coupling of class II to signaling pathways, we conducted mutational analysis of class II structural requirements for signal transduction. Here we report that the cytoplasmic (Cy) domains of I-Ak class II molecules are not required for either receptor-mediated activation of protein tyrosine phosphorylation or Ca2+ mobilization. This is in contrast to the requirement of the Cy domain of beta chain of class II for the alternate signaling pathway and efficient antigen presentation to autoreactive T cell lines. Disparate distribution of functional motifs within the MHC class II molecules may reflect use of distinct receptor associated effector molecules to sustain different modes of signal transduction in various class II-expressing cells.


Physiology ◽  
2004 ◽  
Vol 19 (3) ◽  
pp. 154-158 ◽  
Author(s):  
Franck Matheux ◽  
Jean Villard

Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency. Lentiviral vectors are used for gene therapy in a mouse model of this disease. In addition, by a direct genetic correction approach, a diagnostic test to determine which of the four MHC II genes is defective in new MHC II-deficiency patients has been optimized.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 808-817 ◽  
Author(s):  
Martine J. van Vugt ◽  
Monique J. Kleijmeer ◽  
Tibor Keler ◽  
Ingrid Zeelenberg ◽  
Marc A. van Dijk ◽  
...  

Within multi-subunit Ig receptors, the FcR γ-chain immunoreceptor tyrosine-based activation motif (ITAM) plays a crucial role in enabling antigen presentation. This process involves antigen-capture and targeting to specific degradation and major histocompatibility complex (MHC) class II loading compartments. Antigenic epitopes are then presented by MHC class II molecules to specific T cells. The high-affinity receptor for IgG, hFcγRIa, is exclusively expressed on myeloid lineage cells and depends on the FcR γ-chain for surface expression, efficient ligand binding, and most phagocytic effector functions. However, we show in this report, using the IIA1.6 cell model, that hFcγRIa can potentiate MHC class II antigen presentation, independently of a functional FcR γ-chain ITAM. Immunoelectron microscopic analyses documented hFcγRIa -chain/rabbit IgG-Ovalbumin complexes to be internalized and to migrate via sorting endosomes to MHC class II-containing late endosomes. Radical deletion of the hFcγRIa -chain cytoplasmic tail did not affect internalization of rabbit IgG-Ovalbumin complexes. Importantly, however, this resulted in diversion of receptor-ligand complexes to the recycling pathway and decreased antigen presentation. These results show the hFcγRIa cytoplasmic tail to contain autonomous targeting information for intracellular trafficking of receptor-antigen complexes, although deficient in canonical tyrosine- or dileucine-targeting motifs. This is the first documentation of autonomous targeting by a member of the multichain FcR family that may critically impact the immunoregulatory role proposed for hFcγRIa (CD64).


Sign in / Sign up

Export Citation Format

Share Document