scholarly journals Acquisition of Selectin Binding and Peripheral Homing Properties by CD4+ and CD8+ T Cells

1999 ◽  
Vol 189 (11) ◽  
pp. 1765-1776 ◽  
Author(s):  
Huijuan Xie ◽  
Yaw-Chyn Lim ◽  
Francis W. Luscinskas ◽  
Andrew H. Lichtman

Different T cell subsets exhibit distinct capacities to migrate into peripheral sites of inflammation, and this may in part reflect differential expression of homing receptors and chemokine receptors. Using an adoptive transfer approach, we examined the ability of functionally distinct subsets of T cells to home to a peripheral inflammatory site. The data directly demonstrate the inability of naive T cells and the ability of effector cells to home to inflamed peritoneum. Furthermore, interleukin (IL)-12 directs the differentiation of either CD4+ or CD8+ T cells into effector populations that expresses functional E- and P-selectin ligand and that are preferentially recruited into the inflamed peritoneum compared with T cells differentiated in the presence of IL-4. Recruitment can be blocked by anti–E- and –P-selectin antibodies. The presence of antigen in the peritoneum promotes local proliferation of recruited T cells, and significantly amplifies the Th1 polarization of the lymphocytic infiltrate. Preferential recruitment of Th1 cells into the peritoneum is also seen when cytokine response gene 2 (CRG-2)/interferon γ–inducible protein 10 (IP-10) is used as the sole inflammatory stimulus. We have also found that P-selectin binds only to antigen-specific T cells in draining lymph nodes after immunization, implying that both antigen- and cytokine-mediated signals are required for expression of functional selectin-ligand.

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2541-2546 ◽  
Author(s):  
Nuno L. Alves ◽  
Berend Hooibrink ◽  
Fernando A. Arosa ◽  
René A. W. van Lier

Abstract Recent studies in mice have shown that although interleukin 15 (IL-15) plays an important role in regulating homeostasis of memory CD8+ T cells, it has no apparent function in controlling homeostatic proliferation of naive T cells. We here assessed the influence of IL-15 on antigen-independent expansion and differentiation of human CD8+ T cells. Both naive and primed human T cells divided in response to IL-15. In this process, naive CD8+ T cells successively down-regulated CD45RA and CD28 but maintained CD27 expression. Concomitant with these phenotypic changes, naive cells acquired the ability to produce interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), expressed perforin and granzyme B, and acquired cytotoxic properties. Primed CD8+ T cells, from both noncytotoxic (CD45RA-CD27+) and cytotoxic (CD45RA+CD27-) subsets, responded to IL-15 and yielded ample numbers of cytokine-secreting and cytotoxic effector cells. In summary, all human CD8+ T-cell subsets had the ability to respond to IL-15, which suggests a generic influence of this cytokine on CD8+ T-cell homeostasis in man. (Blood. 2003;102:2541-2546)


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 815-815
Author(s):  
Farhad Ravandi ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Christopher B Benton ◽  
Philip A Thompson ◽  
...  

Abstract Background: Blocking PD-1/PD-L1 pathways enhances anti-leukemia responses by enabling T-cells in murine models of AML (Zhang et al, Blood 2009). PD-1 positive CD8 T-cells are increased in bone marrow (BM) of pts with AML (Daver et al, AACR 2016). PD1 inhibition has shown activity in AML (Berger et al, Clin Cancer Res 2008). We hypothesized that addition of nivolumab to an induction regimen of ara-C and idarubicin may prolong relapse-free survival (RFS) and overall survival (OS); this study was designed to determine the feasibility of this combination. Methods: Pts with newly diagnosed acute myeloid leukemia (by WHO criteria; ≥20% blasts) and high risk MDS (≥10% blasts) were eligible to participate if they were 18-65 yrs of age and had adequate performance status (ECOG ≤3) and organ function (LVEF ≥ 50%; creatinine ≤ 1.5 g mg/dL, bilirubin ≤ 1.5 mg/dL and transaminases ≤ 2.5 times upper limit of normal). Treatment included 1 or 2 induction cycles of ara-C 1.5 g/m2 over 24 hours (days 1-4) and Idarubicin 12 mg/m2 (days 1-3). Nivolumab 3 mg/kg was started on day 24 ± 2 days and was continued every 2 weeks for up to a year. For pts achieving complete response (CR) or CR with incomplete count recovery (CRi) up to 5 consolidation cycles of attenuated dose ara-C and idarubicin was administered at approximately monthly intervals. Eligible pts received an allogeneic stem cell transplant (alloSCT) at any time during the consolidation or thereafter. Results: 3 pts with relapsed AML were treated at a run-in phase with a dose of nivolumab 1 mg/kg without specific drug-related toxicity. Subsequently, 32 pts (median age 53 yrs; range, 26-65) were treated as above including 30 with AML (24 de novo AML, 2 therapy-related AML, 3 secondary AML and 1 therapy-related secondary AML) and 2 high risk MDS. Pre-treatment genetic risk by ELN criteria was 11 adverse, 16 intermediate, and 5 favorable, including 2 FLT3 -ITD mutated, 5 NPM1 mutated, and 7 TP53 mutated. All 32 pts were evaluable for response and 23 (72%) achieved CR/CRi (19 CR, 4 CRi). The 4-week and 8 week mortality was 6% and 6%. The median number of doses of nivolumab received was 6 (range, 0-13); one pt did not receive nivolumab due to insurance issues. 9 pts underwent an alloSCT. After a median follow-up of 8.3 mths (range, 1.5-17.0) the median RFS among the responding pts has not been reached (range, 0.1 - 15.8 mths) and the median OS has not been reached (range 0.5-17.0 mths). Grade 3/4 immune mediated toxicities have been observed in 5 pts and include rash, pancreatitis, and colitis. Other grade 3/4 toxicities thought to be potentially related to nivolumab include cholecystitis in one pt. 9 pts proceeded to an alloSCT. Donor source was matched related in 2, matched unrelated in 6 and haplo-identical in 1 pt. Conditioning regimen was Fludarabine plus busulfan-based in 8, and fludarabine plus melphalan in 1 pt. 4 pts developed graft versus host disease (GVHD)(grade I/II in 3, grade III/IV in 1), which responded to treatment in 3. Multicolor flow-cytometry studies are conducted by the Immunotherapy Platform on baseline (prior to first dose of nivolumab) and on-treatment BM aspirate and peripheral blood to assess the T-cell repertoire and expression of co-stimulatory receptors and ligands on T-cell subsets and leukemic blasts, respectively. The baseline BM was evaluated on 23 of the 32 evaluable pts, including 18 responders and 5 non-responders. Pts who achieved a CR/CRi had a trend of higher frequency of live CD3+ total T cell infiltrate as compared to non-responders in the baseline BM aspirates (Fig 1A). We evaluated expression of immune markers on T cell subsets: CD4 T effector cells [Teff]: CD3+CD4+CD127lo/+Foxp3-, CD4 T regulatory cells [Treg]: CD3+CD4+CD127-Foxp3+, and CD8 T cells. At baseline, BM of non-responders had significantly higher percentage of CD4 T effector cells co-expressing the inhibitory markers PD1 and TIM3 (p<0.05) and a trend towards higher percentage of CD4 T effector cells co-expressing PD1 and LAG3 compared to responders (Fig 1B). Co-expression of TIM3 or LAG3 on PD1+ T cells have been shown to be associated with an exhausted immune phenotype in AML (Zhou et al., Blood 2011). Conclusion: Addition of nivolumab to ara-C and anthracycline induction chemotherapy is feasible and safe in younger pts with AML. Among the pts proceeding to alloSCT the risk of GVHD is not significantly increased. Figure 1 Figure 1. Disclosures Daver: Pfizer Inc.: Consultancy, Research Funding; Otsuka America Pharmaceutical, Inc.: Consultancy; Sunesis Pharmaceuticals, Inc.: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Bristol-Myers Squibb Company: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Consultancy, Research Funding; Jazz: Consultancy; Immunogen: Research Funding; Daiichi-Sankyo: Research Funding; Incyte Corporation: Honoraria, Research Funding. Thompson: Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Takahashi: Symbio Pharmaceuticals: Consultancy. DiNardo: Novartis: Honoraria, Research Funding; Daiichi-Sankyo: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Sharma: Jounce: Consultancy, Other: stock, Patents & Royalties: Patent licensed to Jounce; Astellas: Consultancy; EMD Serono: Consultancy; Amgen: Consultancy; Astra Zeneca: Consultancy; GSK: Consultancy; Consetellation: Other: stock; Evelo: Consultancy, Other: stock; Neon: Consultancy, Other: stock; Kite Pharma: Consultancy, Other: stock; BMS: Consultancy. Cortes: BMS: Consultancy, Research Funding; Sun Pharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding; ImmunoGen: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding. Kantarjian: Delta-Fly Pharma: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Novartis: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2655
Author(s):  
Inesa Navasardyan ◽  
Benjamin Bonavida

The T cell-mediated immune response is primarily involved in the fight against infectious diseases and cancer and its underlying mechanisms are complex. The anti-tumor T cell response is regulated by various T cell subsets and other cells and tissues in the tumor microenvironment (TME). Various mechanisms are involved in the regulation of these various effector cells. One mechanism is the iNOS/.NO that has been reported to be intimately involved in the regulation and differentiation of the various cells that regulate the anti-tumor CD8 T cells. Both endogenous and exogenous .NO are implicated in this regulation. Importantly, the exposure of T cells to .NO had different effects on the immune response, depending on the .NO concentration and time of exposure. For instance, iNOS in T cells regulates activation-induced cell death and inhibits Treg induction. Effector CD8 T cells exposed to .NO result in the upregulation of death receptors and enhance their anti-tumor cytotoxic activity. .NO-Tregs suppress CD4 Th17 cells and their differentiation. Myeloid-derived suppressor cells (MDSCs) expressing iNOS inhibit T cell functions via .NO and inhibit anti-tumor CD8 T cells. Therefore, both .NO donors and .NO inhibitors are potential therapeutics tailored to specific target cells that regulate the T cell effector anti-tumor response.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Kristin Mai ◽  
Andreas Boldt ◽  
Hans-Michael Hau ◽  
Michael Kirschfink ◽  
Stephan Schiekofer ◽  
...  

Background. Chronic or intercurrent alterations of the immune system in patients with end-stage renal disease (CKD) and intermittent hemodialysis (CKD5D, HD) have been attributed to an acute rejection of renal allograft. Methods. Leukocyte subsets in flow cytometry, complement activation, and concentrations of TGFβ, sCD30 (ELISA), and interleukins (CBA) of fifteen patients eligible for renal transplantation were analyzed before, during, and after a regular HD. Results. Before HD, the median proportion of CD8+ effector cells, CD8+ CCR5+ effector cells, and HLA-DR+ regulatory T cells as well as the median concentration of soluble CD30 increased and naive CD8+ T cells decreased. During HD, there was a significant decrease in CD4- CD8- T cells (p<0.001) and an increase in CD25+ T cells (p=0.026), sCD30 (p<0.001), HLA-DR+ regulatory T cells (p=0.005), and regulatory T cells (p=0.003). TGFβ and sCD30 increased significantly over time. The activity of the classical complement pathway started to slightly increase after the first hour of HD and lasted until fifteen minutes after finishing dialysis. The decrease in the functional activity of the alternative pathway was only transient and was followed by a significant increase within 15 minutes after finishing the treatment. Conclusion. HD might interact with the allograft outcome by influencing T cell subsets and activation of the complement system in a biphasic course.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3296-3296 ◽  
Author(s):  
Han-Yun Ren ◽  
Meng Wang ◽  
Xiang-Juan Ma ◽  
Yu-Jun Dong ◽  
Zhi-Xiang Qiu ◽  
...  

Abstract Introduction This study is aimed to investigate chemokine receptors (CCR5, CCR6, CCR7, CCR9, CXCR3 and CCR2) expression on T cell subsets in healthy donors after mobilization with recombinant human granulocyte colony-stimulating factor (rhG-CSF) and analyze its correlation with acute graft-versus-host disease (aGVHD) and to understand the possible mechanisms underlying rhG-CSF-induced immune tolerance. Methods Sixty-eight healthy donor and their recipient pairs of family donor allogeneic hematopoietic stem cell transplantation (allo-HSCT) were included in this study. The expressions of chemokine receptors on CD4+ and CD8+ T cells in the peripheral blood (PB) before and after mobilization was detected using flow cytometry (FCM) respectively. Six chemokine receptors (CCR2, CCR5, CCR6, CCR7, CCR9 and CXCR3) were detected on T cell subsets in all the donors, and CCR5 and CCR7 were detected only in eighteen of all the donors. The expressions of chemokine receptor before and after mobilization was compared and its correlation with II-IV aGVHD were analyzed. Results After rhG-CSF mobilization, the expression of CCR9 on CD4+ T cells and CCR7 on CD8+ T cells were significantly upregulated compared with that before mobilization (p<0.05). However, the mean value of CCR5, CCR6 and CXCR3 expression on CD4+ and CD8+ T cell subsets in PB after mobilization didn’t differ significantly compared with that before mobilization(p>0.10). However, different individuals showed apparent inconsistencies. According to the changes of chemokine receptor expression on CD4+ and CD8+ T cell subsets, the evaluable donors and their relevant recipients were divided into the down-regulated group and the non-down-regulated (unchanged or up-regulated ) group. The incidence of grade II to IV aGVHD in the two groups were compared in their corresponding recipients. In the univariate analysis, mismatched HLA (p=0.046), down-regulation of CCR7 expression on donor CD4+ T cell subsets (p=0.010), unchangeableness or up-regulation of CCR5 expression on donor CD4+ T cell subsets (p=0.032) and CCR6 down-regulation on donor CD8+ T cells (p=0.045) were risk factors for recipients to develop II-IV aGVHD. In the multivariate analysis, down-regulation of CCR7 expression on donor CD4+ T cells after rhG-CSF was independent risk factor for II-IV aGVHD [RR=3.5, 95% CI (1.3-9.4), p=0.012], while CCR5 down-regulation on CD4+ T cells could reduce the incidence of II-IV aGVHD [RR=0.3, 95% CI (0.1-0.8), p=0.031]. Conclusions rhG-CSF mobilization could lead to differential regulation of chemokine receptors expression on T cell subsets, which might cause different effects on the migration of T cells in vivo, and decrease T cells trafficking towards GVHD target organs, and thus reduce the incidence of aGVHD after transplantation. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (6) ◽  
pp. 707-718 ◽  
Author(s):  
Javier Hernandez ◽  
Sandra Aung ◽  
William L. Redmond ◽  
Linda A. Sherman

Not all T cells specific for autoantigens are eliminated in the thymus, and therefore alternate mechanisms are required to prevent potentially autoreactive T cells from developing into effectors. Adoptive transfer of CD8+ T cells from influenza hemagglutinin-specific Clone 4 TCR transgenic mice into mice that express hemagluttinin in the pancreatic islets results in tolerance. This is preceded by activation of Clone 4 T cells that encounter antigen cross-presented in the draining lymph nodes of the pancreas. In this report we compare the phenotype, function, and costimulatory requirements of Clone 4 T cells activated by endogenous self-antigen, with Clone 4 T cells stimulated by influenza virus. The cells undergoing tolerance upregulate both CD69 and CD44, yet only partially downregulate CD62L, and do not express CD49d or CD25. Most importantly, they lack the ability to produce interferon-γ in response to antigen and show no cytolytic activity. Clone 4 T cells disappear after several cycles of division, apparently without leaving the site of initial activation. Surprisingly, despite the fact that such stimulation occurs through recognition of antigen that is cross-presented by a professional antigen-presenting cell, we find this activation is not dependent on costimulation through CD28. These data demonstrate that the recognition by naive CD8+ T cells of cross-presented self-antigen results in localized proliferation and deletion, without the production of effector cells.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4556-4565 ◽  
Author(s):  
Maria Nikolova ◽  
Jean-Daniel Lelievre ◽  
Matthieu Carriere ◽  
Armand Bensussan ◽  
Yves Lévy

Abstract The balanced manifestation of effector functions and the generation of long-living memory cells is a hallmark of efficient CD8+ T-cell response. Accumulating data pinpoint CD4+ CD25high regulatory T (Treg) cells as a key factor for the inefficiency of CD8+ T-cell responses in viral persistence. Little is known about the effects of Treg cells on the homeostasis of healthy donor CD8+ T cells. The present study demonstrates that Treg cells exert differential effects on CD8+ T-cell subsets. Treg cells inhibited mostly the polyclonal proliferation of CD27− effector cells compared with CD27+ memory CD8+ T cells. Moreover, they inhibited the polyclonal and antigen-driven differentiation of memory cells into functional effectors as defined by IFN-γ secretion and induction of CD160 expression. Finally, Treg cells reduced the apoptosis of memory but not of effector and terminal effector cell populations. These effects were at least in part mediated by a decreased expression of PD-L1, but not of programmed death 1 (PD-1), on CD8+ T cells after activation. Thus, in the setting of a healthy immune system, Treg cells fine-tune the memory/effector cell balance and promote the accumulation of long-living memory cells in case of strong stimulation.


2001 ◽  
Vol 194 (7) ◽  
pp. 953-966 ◽  
Author(s):  
Wolfgang Weninger ◽  
Maura A. Crowley ◽  
N. Manjunath ◽  
Ulrich H. von Andrian

It has been proposed that two different antigen-experienced T cell subsets may be distinguishable by their preferential ability to home to lymphoid organs (central memory cells) or nonlymphoid tissues (effector memory/effector cells). We have shown recently that murine antigen-primed CD8+ T cells cultured in interleukin (IL)-15 (CD8IL-15) resemble central memory cells in phenotype and function. In contrast, primed CD8+ T cells cultured in IL-2 (CD8IL-2) become cytotoxic effector cells. Here, the migratory behavior of these two subsets was investigated. Naive, CD8IL-15 cells and, to a lesser degree, CD8IL-2 cells localized to T cell areas in the spleen, but only naive and CD8IL-15 cells homed to lymph nodes (LNs) and Peyer's patches. Intravital microscopy of peripheral LNs revealed that CD8IL-15 cells, but not CD8IL-2 cells, rolled and arrested in high endothelial venules (HEVs). Migration of CD8IL-15 cells to LNs depended on L-selectin and required chemokines that bind CC chemokine receptor (CCR)7. Both antigen-experienced populations, but not naive T cells, responded to inflammatory chemokines and accumulated at sites of inflammation. However, CD8IL-2 cells were 12 times more efficient in migrating to inflamed peritoneum than CD8IL-15 cells. Furthermore, CD8IL-15 cells proliferated rapidly upon reencounter with antigen at sites of inflammation. Thus, central memory-like CD8IL-15 cells home avidly to lymphoid organs and moderately to sites of inflammation, where they mediate rapid recall responses, whereas CD8IL-2 effector T cells accumulate in inflamed tissues, but are excluded from most lymphoid organs.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Christian S. Hinrichs ◽  
Andrew Kaiser ◽  
Chrystal M. Paulos ◽  
Lydie Cassard ◽  
Luis Sanchez-Perez ◽  
...  

Abstract Interleukin-17 (IL-17)–secreting CD8+ T cells have been described, but they have not been thoroughly studied and they do not have a known role in cancer immunotherapy. We skewed CD8+ T cells to secrete IL-17 through priming in Th17-polarizing conditions. IL-17–producing CD8+ T cells demonstrated reduced expression of Eomes and diminished cytolytic differentiation in vitro. However, after adoptive transfer, these cells converted to interferon-γ–producing effector cells and mediated regression of large, established tumors. This improved antitumor immunity was associated with increased expression of IL-7R-alpha, decreased expression of killer cell lectin-like receptor G1, and enhanced persistence of the transferred cells. This report is the first description of a cancer therapy with IL-17–secreting CD8+ T cells. These findings have implications for the improvement of CD8+ T cell–based adoptive immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document