scholarly journals Modulation of Susceptibility to HIV-1 Infection by the Cytotoxic T Lymphocyte Antigen 4 Costimulatory Molecule

1999 ◽  
Vol 191 (11) ◽  
pp. 1987-1998 ◽  
Author(s):  
James L. Riley ◽  
Katia Schlienger ◽  
Patrick J. Blair ◽  
Beatriz Carreno ◽  
Nancy Craighead ◽  
...  

CD4 T cells activated in vitro by anti-CD3/28–coated beads are resistant to infection by CC chemokine receptor 5 (CCR5)-dependent HIV-1 isolates. In vivo, antigen-presenting cells (APCs) activate CD4 T cells in part by signaling through the T cell receptor and CD28, yet cells stimulated in this manner are susceptible to HIV-1 infection. We show that cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement counteracts the CD28 antiviral effects, and that the ratio of CTLA-4 to CD28 engagement determines the susceptibility of HIV-1 infection. Furthermore, unopposed CTLA-4 signaling provided by CD28 blockade promotes vigorous HIV-1 replication, despite minimal T cell proliferation. Finally, CTLA-4 antibodies decrease the susceptibility of antigen-activated CD4 T cells to HIV, suggesting a potential approach to prevent or limit viral spread in HIV-1–infected individuals.

2000 ◽  
Vol 192 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Takeshi Takahashi ◽  
Tomoyuki Tagami ◽  
Sayuri Yamazaki ◽  
Toshimitsu Uede ◽  
Jun Shimizu ◽  
...  

This report shows that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) plays a key role in T cell–mediated dominant immunologic self-tolerance. In vivo blockade of CTLA-4 for a limited period in normal mice leads to spontaneous development of chronic organ-specific autoimmune diseases, which are immunopathologically similar to human counterparts. In normal naive mice, CTLA-4 is constitutively expressed on CD25+CD4+ T cells, which constitute 5–10% of peripheral CD4+ T cells. When the CD25+CD4+ T cells are stimulated via the T cell receptor in vitro, they potently suppress antigen-specific and polyclonal activation and proliferation of other T cells, including CTLA-4–deficient T cells, and blockade of CTLA-4 abrogates the suppression. CD28-deficient CD25+CD4+ T cells can also suppress normal T cells, indicating that CD28 is dispensable for activation of the regulatory T cells. Thus, the CD25+CD4+ regulatory T cell population engaged in dominant self-tolerance may require CTLA-4 but not CD28 as a costimulatory molecule for its functional activation. Furthermore, interference with this role of CTLA-4 suffices to elicit autoimmune disease in otherwise normal animals, presumably through affecting CD25+CD4+ T cell–mediated control of self-reactive T cells. This unique function of CTLA-4 could be exploited to potentiate T cell–mediated immunoregulation, and thereby to induce immunologic tolerance or to control autoimmunity.


2000 ◽  
Vol 191 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Zhengbin Lu ◽  
Lingxian Yuan ◽  
Xianzheng Zhou ◽  
Eduardo Sotomayor ◽  
Hyam I. Levitsky ◽  
...  

In many cases, induction of CD8+ CTL responses requires CD4+ T cell help. Recently, it has been shown that a dominant pathway of CD4+ help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4+ T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide–specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4+ T helper cells, respectively. We found that CD4+ T cells can provide potent help for DCs to activate CD8+ T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4+ help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4+–CD8+ T cell communication via lymphokines. Therefore, we conclude that CD4+ help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4+–CD8+ T cell communication.


2001 ◽  
Vol 194 (7) ◽  
pp. 893-902 ◽  
Author(s):  
Alden M. Doyle ◽  
Alan C. Mullen ◽  
Alejandro V. Villarino ◽  
Anne S. Hutchins ◽  
Frances A. High ◽  
...  

Cytotoxic T lymphocyte antigen (CTLA)-4 plays an essential role in immunologic homeostasis. How this negative regulator of T cell activation executes its functions has remained controversial. We now provide evidence that CTLA-4 mediates a cell-intrinsic counterbalance to restrict the clonal expansion of proliferating CD4+ T cells. The regulation of CTLA-4 expression and function ensures that, after ∼3 cell divisions of expansion, most progeny will succumb to either proliferative arrest or death over the ensuing three cell divisions. The quantitative precision of the counterbalance hinges on the graded, time-independent induction of CTLA-4 expression during the first three cell divisions. In contrast to the limits imposed on unpolarized cells, T helper type 1 (Th1) and Th2 effector progeny may be rescued from proliferative arrest by interleukin (IL)-12 and IL-4 signaling, respectively, allowing appropriately stimulated progeny to proceed to the stage of tissue homing. These results suggest that the cell-autonomous regulation of CTLA-4 induction may be a central checkpoint of clonal expansion of CD4+ T cells, allowing temporally and spatially restricted growth of progeny to be dictated by the nature of the threat posed to the host.


2012 ◽  
Vol 287 (14) ◽  
pp. 11098-11107 ◽  
Author(s):  
Jozsef Karman ◽  
Ji-Lei Jiang ◽  
Nathan Gumlaw ◽  
Hongmei Zhao ◽  
Juanita Campos-Rivera ◽  
...  

1999 ◽  
Vol 189 (7) ◽  
pp. 1157-1162 ◽  
Author(s):  
Kathy D. McCoy ◽  
Ian F. Hermans ◽  
J. Henry Fraser ◽  
Graham Le Gros ◽  
Franca Ronchese

The mechanisms that regulate the strength and duration of CD8+ cytotoxic T cell activity determine the effectiveness of an antitumor immune response. To better understand the antitumor effects of anti-cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) antibody treatment, we analyzed the effect of CTLA-4 signaling on CD8+ T cells in vitro and in vivo. In vitro, cross-linking of CTLA-4 on purified CD8+ T cells caused decreased proliferative responses to anti-CD3 stimulation and rapid loss of activation marker expression. In vivo, blockade of CTLA-4 by neutralizing anti–CTLA-4 mAb greatly enhanced the accumulation, activation, and cytotoxic activity of CD8+ T cells induced by immunization with Ag on dendritic cells (DC). This enhanced response did not require the expression of MHC class II molecules on DC or the presence of CD4+ T cells. These results demonstrate that CTLA-4 blockade is able to directly enhance the proliferation and activation of specific CD8+ T cells, indicating its potential for tumor immunotherapy even in situations in which CD4+ T cell help is limited or absent.


Immunology ◽  
2008 ◽  
Vol 124 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Shalini Gupta ◽  
Ramanamurthy Boppana ◽  
Gyan C. Mishra ◽  
Bhaskar Saha ◽  
Debashis Mitra

2015 ◽  
Vol 90 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Benjamin Trinité ◽  
Chi N. Chan ◽  
Caroline S. Lee ◽  
David N. Levy

ABSTRACTHIV-1 infection leads to the progressive depletion of the CD4 T cell compartment by various known and unknown mechanisms.In vivo, HIV-1 infects both activated and resting CD4 T cells, butin vitro, in the absence of any stimuli, resting CD4 T cells from peripheral blood are resistant to infection. This resistance is generally attributed to an intracellular environment that does not efficiently support processes such as reverse transcription (RT), resulting in abortive infection. Here, we show thatin vitroHIV-1 infection of resting CD4 T cells induces substantial cell death, leading to abortive infection.In vivo, however, various microenvironmental stimuli in lymphoid and mucosal tissues provide support for HIV-1 replication. For example, common gamma-chain cytokines (CGCC), such as interleukin-7 (IL-7), render resting CD4 T cells permissible to HIV-1 infection without inducing T cell activation. Here, we find that CGCC primarily allow productive infection by preventing HIV-1 triggering of apoptosis, as evidenced by early release of cytochromecand caspase 3/7 activation. Cell death is triggered both by products of reverse transcription and by virion-borne Vpr protein, and CGCC block both mechanisms. When HIV-1 RT efficiency was enhanced by SIVmac239 Vpx protein, cell death was still observed, indicating that the speed of reverse transcription and the efficiency of its completion contributed little to HIV-1-induced cell death in this system. These results show that a major restriction on HIV-1 infection in resting CD4 T cells resides in the capacity of these cells to survive the early steps of HIV-1 infection.IMPORTANCEA major consequence of HIV-1 infection is the destruction of CD4 T cells. Here, we show that delivery of virion-associated Vpr protein and the process of reverse transcription are each sufficient to trigger apoptosis of resting CD4 T cells isolated from peripheral blood. While these 2 mechanisms have been previously described in various cell types, we show for the first time their concerted effect in inducing resting CD4 T cell depletion. Importantly, we found that cytokines such as IL-7 and IL-4, which are particularly active in sites of HIV-1 replication, protect resting CD4 T cells from these cytopathic effects and, primarily through this protection, rather than through enhancement of specific replicative steps, they promote productive infection. This study provides important new insights for the understanding of the early steps of HIV-1 infection and T cell depletion.


Sign in / Sign up

Export Citation Format

Share Document