scholarly journals Cd8− T Cell Transfectants That Express a High Affinity T Cell Receptor Exhibit Enhanced Peptide-Dependent Activation

2001 ◽  
Vol 194 (8) ◽  
pp. 1043-1052 ◽  
Author(s):  
Phillip D. Holler ◽  
Alice R. Lim ◽  
Bryan K. Cho ◽  
Laurie A. Rund ◽  
David M. Kranz

T cells are activated by binding of the T cell receptor (TCR) to a peptide-major histocompatibility complex (MHC) complex (pMHC) expressed on the surface of antigen presenting cells. Various models have predicted that activation is limited to a narrow window of affinities (or dissociation rates) for the TCR–pMHC interaction and that above or below this window, T cells will fail to undergo activation. However, to date there have not been TCRs with sufficiently high affinities in order to test this hypothesis. In this report we examined the activity of a CD8-negative T cell line transfected with a high affinity mutant TCR (KD = 10 nM) derived from cytotoxic T lymphocyte clone 2C by in vitro engineering. The results show that despite a 300-fold higher affinity and a 45-fold longer off-rate compared with the wild-type TCR, T cells that expressed the mutant TCRs were activated by peptide. In fact, activation could be detected at significantly lower peptide concentrations than with T cells that expressed the wild-type TCR. Furthermore, binding and functional analyses of a panel of peptide variants suggested that pMHC stability could account for apparent discrepancies between TCR affinity and T cell activity observed in several prior studies.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3830-3830
Author(s):  
Yasmine Van Caeneghem ◽  
Glenn Goetgeluk ◽  
Sylvia Snauwaert ◽  
Fritz Offner ◽  
Reno Debets ◽  
...  

Abstract T cell therapy for the treatment of malignant diseases is based on the lenti- or retroviral introduction of an exogenous receptor in peripheral blood T cells. The exogenous receptor is either antibody based or T cell receptor (TCR) based. Chimeric antigen receptors (CAR) are antibody based receptors that can redirect T cells against membrane antigens expressed by malignant cells. CD19-specific CARs were reported to be very effective in the treatment of CD19+ acute leukemias. To redirect T cells based on cytoplasmic antigens, transduction of a TCR is required. However, this approach still faces technical problems, esp. interference of the endogenous TCR chains may cause loss of avidity and possibly induction of autoimmunity. We here present an alternative strategy, in which, not mature T cells but CD34+ hematopoietic precursor cells are transduced and subsequently differentiated to mature T cells after introduction of a wild type TCR or of a fusion TCR:CD3ζ with or without costimulator signal. When Wilms tumor 1 (WT1)/HLA-A2-specific T cell receptor α and β chain is introduced in CD34+ cells derived from human thymus, cord blood or adult mobilized precursor cells and subsequently induced to differentiate to T cells on OP9 stromal cells expressing Delta-like ligand 1(OP9-DL1) in the presence of stem cell factor, flt3 ligand and interleukin 7, massive proliferation is observed while the cells differentiate to CD4+CD8+double positive (DP) transduced TCR+ immature cells. Few mature T cells are generated in these cultures, but after addition of the specific peptide to HLA-A2+ cultures, DP cells rapidly differentiate to phenotypically mature naïve CD8 single positive T cells. Upon activation, these T cells specifically lyse WT1/HLA-A2 cell lines and produce interferon-γ. Microarray expression analysis revealed these culture-generated T cells to be similar to TCR-transduced peripheral blood T cells, except for 1) the expression of only one TCR α and β chain by the in vitro generated T cells and 2) the underexpression of costimulatory/inhibitory molecules such as CD28, CTLA-4 and PD-L1. The absence of CD28 on the cell membrane was confirmed by flow cytometry. Since it was shown that CD28 signaling is essential for in vivo functionality using CARs, we next generated fusion TCR constructs of a gp100/HLA-A2-specific TCR and the signaling cassettes of CD3ζ and CD28.The following constructs were introduced in CD34+ cells: wild type TCR, TCR:ζ or TCR:CD28ζ α and β chains. The α and β chain double-transduced cells were subsequently cultured on OP9-DL1 in the absence of the specific antigen. It was observed that TCR:ζ transduced precursors proliferated significantly less than wild type TCR transduced cells, but the majority of the cells differentiated towards DP TCR:ζ+ cells, which upon addition of the specific antigen differentiated to phenotypically mature T cells. TCR:CD28ζ transduced cells proliferated least of all and spontaneously matured to functional double negative T cells without passing through the DP stage. These observations are compatible with data obtained in mice showing that strong TCR activation during thymocyte differentiation inhibits the generation of DP cells. In all of these cultures, endogenous TCR rearrangements were suppressed, which resulted in single receptor tumoricidal cells. Functional analysis of these various cell populations showed similar proliferation on T cell growth factors and specific cytolytic activity of gp100+ HLA-A2+ tumor lines. However, the TCR:CD28ζ transduced cells produced significantly higher levels of TNFα and interferon-γ and were the only ones that produced interleukin-2 upon specific stimulation. In conclusion, we have shown that high numbers of polyfunctional single receptor TCR:CD28ζ+ cells can be generated in vitro from clinically relevant stem cell sources. These cells produce interleukin-2, TNFα and interferon-γ and specifically kill gp100/HLA-A2+ tumor cell lines. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 187 (5) ◽  
pp. 721-731 ◽  
Author(s):  
Brian W.P. Seymour ◽  
Laurel J. Gershwin ◽  
Robert L. Coffman

Mice exposed for 20 min daily to aerosolized ovalbumin (OVA) for 10 d at concentrations from 1 to 0.01% OVA made greatly reduced immunoglobulin (Ig)-E responses to subsequent immunogenic OVA challenges, given either intraperitoneally or by aerosol. This IgE-specific unresponsiveness lasted for at least four months. However, these aerosol-treated mice were primed for larger OVA-specific IgG1 and IgG2a responses. The specific reduction in IgE responses was not due to preferential induction of a T helper (Th)-1 response as aerosol OVA– primed mice made greatly reduced Th2 and no detectable Th1 response after rechallenge in vitro. Consistent with this, the increase in circulating eosinophils observed in control Th2-primed mice was absent in aerosol OVA–treated animals. Interferon (IFN)-γ was not required for this unresponsiveness, as IFN-γ knockout mice and anti–IFN-γ antibody-treated wild-type mice had greatly reduced levels of IgE similar to wild-type controls. CD8+ T cells played a relatively small role as IgE responses were reduced to about the same extent in β2 microglobulin-deficient, or in anti-CD8–treated wild-type mice as in normal mice after aerosol OVA treatment. Similarly, T cell receptor (TCR)-γ/δ T cells were not required for maximal inhibition of the IgE response. These results demonstrate that exposure to inhaled protein antigens can induce a state of unresponsiveness of CD4+ T cells that results in a prolonged loss of IgE and eosinophil responses to subsequent challenges. This T cell unresponsiveness was shown not to require CD8+ or TCR-γ/δ+ T cells or IFN-γ.


2016 ◽  
Vol 213 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Yuwen Zhu ◽  
Alessandro Paniccia ◽  
Alexander C. Schulick ◽  
Wei Chen ◽  
Michelle R. Koenig ◽  
...  

T cell immunoglobulin and ITIM domain (TIGIT) and CD226 emerge as a novel T cell cosignaling pathway in which CD226 and TIGIT serve as costimulatory and coinhibitory receptors, respectively, for the ligands CD155 and CD112. In this study, we describe CD112R, a member of poliovirus receptor–like proteins, as a new coinhibitory receptor for human T cells. CD112R is preferentially expressed on T cells and inhibits T cell receptor–mediated signals. We further identify that CD112, widely expressed on antigen-presenting cells and tumor cells, is the ligand for CD112R with high affinity. CD112R competes with CD226 to bind to CD112. Disrupting the CD112R–CD112 interaction enhances human T cell response. Our experiments identify CD112R as a novel checkpoint for human T cells via interaction with CD112.


1991 ◽  
Vol 173 (3) ◽  
pp. 561-568 ◽  
Author(s):  
T Hünig ◽  
R Mitnacht

Recent results have indicated that positive and negative repertoire selection act on the major population of CD4,8 double-positive (DP) thymocytes that express 5-10-fold less T cell receptor (TCR) than mature T cells (i.e., they are TCRlow). Since DP cells obtained ex vivo are heterogeneous with regard to their stage within thymic selection, a homogeneous population of virgin DP cells suitable for selection studies was generated in vitro from their immediate precursors, the CD8 single-positive (SP) immature blast cells. To mimic TCR-mediated selection signals, these virgin DP cells were then cultured for another 2 d in the presence of immobilized anti-TCR monoclonal antibodies with or without interleukin 2 (IL-2). Daily monitoring of recovery and phenotype showed that without TCR stimulation, the cells remained DP and became small, TCRlow cells that were lost with a half-life of 1 d, regardless of the presence of IL-2. TCR stimulation resulted in rapid downregulation of CD4 and CD8, maintenance of a larger cell size, and induction of the CD53 antigen that marks mature and CD4,8 double-negative rat thymocytes. In the absence of IL-2, viability decreased as rapidly as without TCR stimulation. Addition of IL-2 rescued TCR-stimulated virgin DP cells and prevented CD8 downregulation, so that 50-80% of input DP cells were recovered after 2 d as CD4-8+53+ cells. After release from modulation, these in vitro generated CD8 SP cells quantitatively upregulated the TCR to the TCRhigh phenotype and were readily induced to proliferate and exhibit cytotoxic T lymphocyte (CTL) activity in a polyclonal readout. Evidence is presented implicating an IL-2 receptor (IL-2R) not containing the p55 chain (i.e., most likely the p70 intermediate affinity IL-2R) in the TCR plus IL-2-driven in vitro differentiation of virgin DP cells towards the mature CD8 SP phenotype.


1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


2002 ◽  
Vol 196 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Mark Lee ◽  
Erik Ranheim ◽  
Cheng Chi Chao ◽  
Maija Sanna ◽  
...  

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112242 ◽  
Author(s):  
Ghanashyam Sarikonda ◽  
Georgia Fousteri ◽  
Sowbarnika Sachithanantham ◽  
Jacqueline F. Miller ◽  
Amy Dave ◽  
...  

2000 ◽  
Vol 149 (1) ◽  
pp. 181-194 ◽  
Author(s):  
Matthias Krause ◽  
Antonio S. Sechi ◽  
Marlies Konradt ◽  
David Monner ◽  
Frank B. Gertler ◽  
...  

T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76–associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3–coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document