scholarly journals Sensory Adaptation in Naive Peripheral CD4 T Cells

2001 ◽  
Vol 194 (9) ◽  
pp. 1253-1262 ◽  
Author(s):  
Katy Smith ◽  
Benedict Seddon ◽  
Marco A. Purbhoo ◽  
Rose Zamoyska ◽  
Amanda G. Fisher ◽  
...  

T cell receptor interactions with peptide/major histocompatibility complex (pMHC) ligands control the selection of T cells in the thymus as well as their homeostasis in peripheral lymphoid organs. Here we show that pMHC contact modulates the expression of CD5 by naive CD4 T cells in a process that requires the continued expression of p56lck. Reduced CD5 levels in T cells deprived of pMHC contact are predictive of elevated Ca2+ responses to subsequent TCR engagement by anti-CD3 or nominal antigen. Adaptation to peripheral pMHC contact may be important for regulating naive CD4 T cell responsiveness.

Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2053-2061 ◽  
Author(s):  
Laura Crompton ◽  
Naeem Khan ◽  
Rajiv Khanna ◽  
Laxman Nayak ◽  
Paul A. H. Moss

Antigen-specific CD8+ cytotoxic T cells often demonstrate extreme conservation of T-cell receptor (TCR) usage between different individuals, but similar characteristics have not been documented for CD4+ T cells. CD4+ T cells predominantly have a helper immune role, but a cytotoxic CD4+ T-cell subset has been characterized, and we have studied the cytotoxic CD4+ T-cell response to a peptide from human cytomegalovirus glycoprotein B presented through HLA-DRB*0701. We show that this peptide elicits a cytotoxic CD4+ T-cell response that averages 3.6% of the total CD4+ T-cell repertoire of cytomegalovirus-seropositive donors. Moreover, CD4+ cytotoxic T-cell clones isolated from different individuals exhibit extensive conservation of TCR usage, which indicates strong T-cell clonal selection for peptide recognition. Remarkably, this TCR sequence was recently reported in more than 50% of cases of CD4+ T-cell large granular lymphocytosis. Immunodominance of cytotoxic CD4+ T cells thus parallels that of CD8+ subsets and suggests that cytotoxic effector function is critical to the development of T-cell clonal selection, possibly from immune competition secondary to lysis of antigen-presenting cells. In addition, these TCR sequences are highly homologous to those observed in HLA-DR7+ patients with CD4+ T-cell large granular lymphocytosis and implicate cytomegalovirus as a likely antigenic stimulus for this disorder.


2003 ◽  
Vol 198 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Sayuri Yamazaki ◽  
Tomonori Iyoda ◽  
Kristin Tarbell ◽  
Kara Olson ◽  
Klara Velinzon ◽  
...  

An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1417-1417
Author(s):  
Patrick Adair ◽  
Yong Chan Kim ◽  
Kathleen P. Pratt ◽  
David W Scott

Abstract Engineered T cells are a vital component in the armamentarium of cellular therapies. In this presentation, we examine how human CD4+ T cells, genetically engineered to express a T-cell receptor (TCR) specific for a C2 domain epitope of the coagulation protein cofactor FVIII, can be skewed or polarized to different T-helper subsets. Two TCRs were cloned from Th2 and Th17/Th1 phenotyped CD4+ T cells isolated via a tetramer guided epitope mapping (TGEM) technique from a hemophilia A subject after clinical diagnosis of an inhibitor (neutralizing antibody) to FVIII given as replacement therapy. The two TCRs were cloned using a 5’ RACE with semi-nested PCR and transduced via a retroviral vector into healthy non-hemophilia A human donor CD4+ T cells. Based on proliferation and HLA class II tetramer staining data, engineered CD4+ T cells expressing the different cloned TCRs exhibited different avidities for the same C2 peptide (containing the epitope) over a dose titration curve, despite similar levels of TCR expression on the CD4 T-cell surface. IFN-γ, TNF-α, IL-6, and IL-10 cytokine production levels following stimulation with C2 peptide and DR1 antigen presenting cells, as measured by cytokine bead analysis, were significantly greater for the higher avidity TCR, which was cloned from a “Th2” phenotyped CD4+ T-cell clone. Interestingly, neither the engineered CD4+ T cells expressing the Th2 TCR nor the cells expressing the Th17/Th1 TCR produced cytokines characteristic of their respective original parental clones. Rather, they reflected the cytokine profiles of the donor populations used for transduction. These preliminary data led us to investigate how the different avidities of the two cloned TCRs can modulate the T-helper subset skewing/differentiation potential of engineered CD4+T cells. We hypothesized that the TCR is merely a switch that can activate or direct engineered CD4+ T cells to an antigen-specific response that would be skewed to the T-helper phenotypes of the cells prior to TCR transduction. We further hypothesized that this response could be modulated after TCR transduction according to the apparent tetramer avidity of the engineered cells. We successfully skewed the engineered human T-helper cells to Th1, Th2 and Th17 lineages, based on T-helper signature cytokine expression and the transcription factors T-bet, Gata3 and RORγt. Moreover, we observed that TCR transduction into naïve human CD4+ T cells did not itself affect the T-helper subset skewing of the cells. Preliminary experiments showed a trend toward Th2 skewing for the high avidity Th2 CD4+ T cells having an engineered TCR when they were cultured under either Th1 or Th2 polarizing conditions and stimulated with the C2 peptide, compared to the phenotypes obtained following stimulation of polyclonal CD4 T cells with anti-CD3. These studies will improve our designing of engineered TCRs for CD4+T-cell therapy, especially when concerns of T-helper effector function and plasticity are important to clinical outcomes. Supported by NIH RO1-HL061883 (DWS), funding from Bayer and CSL Behring (KPP) and intramural support from NIAID (EMS). We thank Dr. Arthur Thompson (Puget Sound Blood Center) for enrolling patients and we thank all blood donors. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Shiyu Wang ◽  
Longlong Wang ◽  
Ya Liu

AbstractCD4+ T cells are key components of adaptive immunity. The cell differentiation equips CD4+ T cells with new functions. However, the effect of cell differentiation on T cell receptor (TCR) repertoire is not investigated. Here, we examined the features of TCR beta (TCRB) repertoire of the top clones within naïve, memory and regular T cell (Treg) subsets: repertoire structure, gene usage, length distribution and sequence composition. First, we found that memory subsets and Treg would be discriminated from naïve by the features of TCRB repertoire. Second, we found that the correlations between the features of memory subsets and naïve were positively related to differentiation levels of memory subsets. Third, we found that public clones presented a reduced proportion and a skewed sequence composition in differentiated subsets. Furthermore, we found that public clones led naïve to recognize a broader spectrum of antigens than other subsets. Our findings suggest that TCRB repertoire of CD4+ T cell subsets is skewed in a differentiation-depended manner. Our findings show that the variations of public clones contribute to these changes. Our findings indicate that the reduce of public clones in differentiation trim the antigen specificity of CD4+ T cells. The study unveils the physiological effect of memory formation and facilitates the selection of proper CD4+ subset for cellular therapy.


1989 ◽  
Vol 170 (1) ◽  
pp. 135-143 ◽  
Author(s):  
N S Liao ◽  
J Maltzman ◽  
D H Raulet

We report here a mAb, 14-2, reactive with TCRs that include V beta 14. The frequency of V beta 14+ T cells varies with CD4 and CD8 subset and is controlled by the H-2 genes. Thus CD8+ T cells from H-2b mice include approximately 2.3% V beta 14+ T cells while CD8+ T cells from mice expressing K kappa include greater than 8% V beta 14+ T cells. In all strains examined, 7-8% of CD4+ T cells express V beta 14. The frequent usage of V beta 14 in CD8+ T cells of K kappa-expressing mice is a result of preferential positive selection of V beta 14+ CD8+ T cells as demonstrated by analysis of radiation chimeras. These studies demonstrate that H-2-dependent positive selection occurs in unmanipulated mice. Furthermore, the results imply that positive selection, and possibly H-2 restriction, can be strongly influenced by a V beta domain, with some independence from the beta-junctional sequence and alpha chain.


2020 ◽  
Author(s):  
Menghua Lyu ◽  
Shiyu Wang ◽  
Kai Gao ◽  
Longlong Wang ◽  
Bin Li ◽  
...  

AbstractCD4 T cell is crucial in CMV infection, but its role is still unclear during this process. Here, we present a single-cell RNA-seq together with T cell receptor (TCR) sequencing to screen the heterogenicity and potential function of CMV pp65 reactivated CD4+ T cell subsets from human peripheral blood, and unveil their potential interactions. Notably, Treg composed the major part of these reactivated cells. Treg gene expression data revealed multiple transcripts of both inflammatory and inhibitory functions. Additionally, we describe the detailed phenotypes of CMV-reactivated effector-memory (Tem), cytotoxic T (CTL), and naïve T cells at the single-cell resolution, and implied the direct derivation of CTL from naïve CD4+ T cells. By analyzing the TCR repertoire, we identified a clonality in stimulated Tem and CTLs, and a tight relationship of Tem and CTL showing a large share in TCR. This study provides clues for understanding the function of CD4+ T cells subsets and unveils their interaction in CMV infection, and may promote the development of CMV immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Menghua Lyu ◽  
Shiyu Wang ◽  
Kai Gao ◽  
Longlong Wang ◽  
Xijun Zhu ◽  
...  

CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.


2010 ◽  
Vol 208 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Christophe Viret ◽  
Camille Lamare ◽  
Martine Guiraud ◽  
Nicolas Fazilleau ◽  
Agathe Bour ◽  
...  

Thymus-specific serine protease (TSSP) is a novel protease that may contribute to the generation of the peptide repertoire presented by MHC class II molecules in the thymus. Although TSSP deficiency has no quantitative impact on the development of CD4 T cells expressing a polyclonal T cell receptor (TCR) repertoire, the development of CD4 T cells expressing the OTII and Marilyn transgenic TCRs is impaired in TSSP-deficient mice. In this study, we assess the role of TSSP in shaping the functional endogenous polyclonal CD4 T cell repertoire by analyzing the response of TSSP-deficient mice to several protein antigens (Ags). Although TSSP-deficient mice responded normally to most of the Ags tested, they responded poorly to hen egg lysozyme (HEL). The impaired CD4 T cell response of TSSP-deficient mice to HEL correlated with significant alteration of the dominant TCR-β chain repertoire expressed by HEL-specific CD4 T cells, suggesting that TSSP is necessary for the intrathymic development of cells expressing these TCRs. Thus, TSSP contributes to the diversification of the functional endogenous CD4 T cell TCR repertoire in the thymus.


1995 ◽  
Vol 181 (4) ◽  
pp. 1569-1574 ◽  
Author(s):  
C Pfeiffer ◽  
J Stein ◽  
S Southwood ◽  
H Ketelaar ◽  
A Sette ◽  
...  

Antigen priming of naive CD4 T cells can generate effector CD4 T cells that produce interleukin 4 (T helper [Th]2-like) or interferon-gamma (Th1-like). Using a system in which priming leads to responses dominated by one or the other of these cell types, we show that varying either the antigenic peptide or the major histocompatibility complex class II molecule can determine whether Th1-like or Th2-like responses are obtained. Our results show that peptide/major histocompatibility complex class II complexes that interact strongly with the T cell receptor favor generation of Th1-like cells, while those that bind weakly favor priming of Th2-like T cells. Thus, signals from the T cell receptor can influence the differentiation of CD4 T cells into specific types of effector cells.


Sign in / Sign up

Export Citation Format

Share Document