scholarly journals MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells

2005 ◽  
Vol 202 (5) ◽  
pp. 663-671 ◽  
Author(s):  
Sergey Filippov ◽  
Gerald C. Koenig ◽  
Tae-Hwa Chun ◽  
Kevin B. Hotary ◽  
Ichiro Ota ◽  
...  

During pathologic vessel remodeling, vascular smooth muscle cells (VSMCs) embedded within the collagen-rich matrix of the artery wall mobilize uncharacterized proteolytic systems to infiltrate the subendothelial space and generate neointimal lesions. Although the VSMC-derived serine proteinases, plasminogen activator and plasminogen, the cysteine proteinases, cathepsins L, S, and K, and the matrix metalloproteinases MMP-2 and MMP-9 have each been linked to pathologic matrix-remodeling states in vitro and in vivo, the role that these or other proteinases play in allowing VSMCs to negotiate the three-dimensional (3-D) cross-linked extracellular matrix of the arterial wall remains undefined. Herein, we demonstrate that VSMCs proteolytically remodel and invade collagenous barriers independently of plasmin, cathepsins L, S, or K, MMP-2, or MMP-9. Instead, we identify the membrane-anchored matrix metalloproteinase, MT1-MMP, as the key pericellular collagenolysin that controls the ability of VSMCs to degrade and infiltrate 3-D barriers of interstitial collagen, including the arterial wall. Furthermore, genetic deletion of the proteinase affords mice with a protected status against neointimal hyperplasia and lumen narrowing in vivo. These studies suggest that therapeutic interventions designed to target MT1-MMP could prove beneficial in a range of human vascular disease states associated with the destructive remodeling of the vessel wall extracellular matrix.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Tatsuya Usui ◽  
Muneyoshi Okada ◽  
Hideyuki Yamawaki

Histone deacetylases (HDACs) are transcriptional co-regulators. We have recently demonstrated that a class IIa HDAC, HDAC4 promotes reactive oxygen species (ROS)-dependent vascular smooth muscle inflammation and mediates the development of hypertension in spontaneously hypertensive rats. Pathogenesis of hypertension is in part modulated by vascular structural remodeling via proliferation and migration of vascular smooth muscle cells (SMCs). We thus examined whether HDAC4 controls SMCs proliferation and migration. In rat mesenteric arterial SMCs, small interfering RNA (siRNA) against HDAC4 inhibited platelet-derived growth factor (PDGF)-BB-induced SMCs proliferation as determined by a cell counting (51% inhibition, n=7) or bromodeoxyuridine incorporation assay (95% inhibition, n=6) and migration as determined by Boyden chamber assay (71% inhibition, n=3). Expression and activity of HDAC4 were increased by PDGF-BB (30% increase, n=5 and 170% increase, n=4, respectively). HDAC4 siRNA inhibited phosphorylation of p38 (69% inhibition, n=5) and heat shock protein (HSP) 27 (91% inhibition, n=5) and expression of cyclin D1 (58% inhibition, n=5) as measured by Western blotting. HDAC4 siRNA also inhibited PDGF-BB-induce ROS production as measured fluorometrically using 2’ 7’-dichlorofluorescein diacetate (77% inhibition, n=4) and nicotinamide adenine dinucleotide phosphate oxidase activity as measured by lucigenin assay (61% inhibition, n=4). A Ca 2+ /calmodulin (CaM)-dependent protein kinase (CaMK) II inhibitor, KN93 inhibited PDGF-BB-induced SMCs proliferation (58% inhibition, n=4) and migration (75% inhibition, n=3) as well as phosphorylation of HDAC4 (84% inhibition, n=4). In vivo, a class IIa HDACs inhibitor, MC1568 prevented neointimal hyperplasia in mice carotid ligation model (54% inhibition, n=6). MC1568 also inhibited increased activity of HDAC4 in the neointimal lesions. The present results for the first time demonstrate that HDAC4 controls PDGF-BB-induced SMCs proliferation and migration through activation of p38/HSP27 signals via ROS generation in a CaMKII-dependent manner, which may lead to the neointima hyperplasia in vivo.


2019 ◽  
Vol 8 (1) ◽  
pp. 50-60
Author(s):  
Hozhabr Mozafari ◽  
Changchun Zhou ◽  
Linxia Gu

Abstract The stiffness of arterial wall in response to cardiovascular diseases has been associated with the changes in extracellular matrix (ECM) proteins, i.e., collagen and elastin. Vascular smooth muscle cells (VSMCs) helped to regulate the ECM reorganizations and thus contributed to arterial stiffness. This article reviewed experimental and computational studies for quantifying the roles of ECM proteins and VSMCs in mechanical properties of arteries, including nanostructure and mechanical properties of VSMCs and ECMs, cell-ECM interaction, and biomimetic gels/scaffolds induced contractile properties and phenotype changing of VSMCs. This work will facilitate our understanding of how the microenvironments and mechanotransduction impact and regulate the arterial adaptation.


Sign in / Sign up

Export Citation Format

Share Document