scholarly journals MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection

2016 ◽  
Vol 213 (12) ◽  
pp. 2793-2809 ◽  
Author(s):  
Anda I. Meierovics ◽  
Siobhán C. Cowley

Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4+ T cells to the lungs after pulmonary F. tularensis LVS infection. Here, we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell–deficient mice (MR1−/− mice) rescued their defect in the recruitment of activated CD4+ T cells to the lungs. We further demonstrate that MAIT cell–dependent GM-CSF production stimulated monocyte differentiation in vitro, and that in vivo production of GM-CSF was delayed in the lungs of MR1−/− mice. Finally, GM-CSF–deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1−/− mice. Overall, our data demonstrate that MAIT cells promote early pulmonary GM-CSF production, which drives the differentiation of inflammatory monocytes into Mo-DCs. Further, this delayed differentiation of Mo-DCs in MR1−/− mice was responsible for the delayed recruitment of activated CD4+ T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.

2020 ◽  
Vol 5 (49) ◽  
pp. eabc9492 ◽  
Author(s):  
Lauren J. Howson ◽  
Wael Awad ◽  
Anouk von Borstel ◽  
Hui Jing Lim ◽  
Hamish E. G. McWilliam ◽  
...  

The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24091 ◽  
Author(s):  
Valeria Judkowski ◽  
Alcinette Bunying ◽  
Feng Ge ◽  
Jon R. Appel ◽  
Kingyee Law ◽  
...  

2015 ◽  
Vol 280 ◽  
pp. 36-42 ◽  
Author(s):  
E. Peelen ◽  
A.-H. Muris ◽  
J. Damoiseaux ◽  
S. Knippenberg ◽  
K. Broens ◽  
...  

2011 ◽  
Vol 186 (9) ◽  
pp. 5468-5477 ◽  
Author(s):  
Ian K. Campbell ◽  
Annemarie van Nieuwenhuijze ◽  
Elodie Segura ◽  
Kristy O’Donnell ◽  
Elise Coghill ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (8) ◽  
pp. 568-581 ◽  
Author(s):  
Clint Piper ◽  
Vivian Zhou ◽  
Richard Komorowski ◽  
Aniko Szabo ◽  
Benjamin Vincent ◽  
...  

Abstract Gastrointestinal (GI) tract involvement is the major cause of morbidity and mortality in acute graft-versus-host disease (GVHD), and pathological damage is largely attributable to inflammatory cytokine production. Recently, granulocyte-macrophage colony stimulating factor (GM-CSF) has been identified as a cytokine that mediates inflammation in the GI tract, but the transcriptional program that governs GM-CSF production and the mechanism by which GM-CSF links adaptive to innate immunity within this tissue site have not been defined. In the current study, we identified Bhlhe40 as a key transcriptional regulator that governs GM-CSF production by CD4+ T cells and mediates pathological damage in the GI tract during GVHD. In addition, we observed that GM-CSF was not regulated by either interleukin 6 (IL-6) or IL-23, which are both potent inducers of GVHD-induced colonic pathology, indicating that GM-CSF constitutes a nonredundant inflammatory pathway in the GI tract. Mechanistically, GM-CSF had no adverse effect on regulatory T-cell reconstitution, but linked adaptive to innate immunity by enhancing the activation of donor-derived dendritic cells in the colon and subsequent accumulation of these cells in the mLNs. In addition, GM-CSF promoted indirect alloantigen presentation, resulting in the accumulation of donor-derived T cells with a proinflammatory cytokine phenotype in the colon. Thus, Bhlhe40+ GM-CSF+ CD4+ T cells constitute a colitogenic T-cell population that promotes indirect alloantigen presentation and pathological damage within the GI tract, positioning GM-CSF as a key regulator of GVHD in the colon and a potential therapeutic target for amelioration of this disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 62-62
Author(s):  
Clint Piper ◽  
Vivan Zhou ◽  
Brian T. Edelson ◽  
Reshma Taneja ◽  
William R. Drobyski

Abstract Damage to the gastrointestinal tract is the major cause of morbidity during acute graft-versus-host disease (GVHD). While T cells are the proximate drivers of GVHD, disease induction and amplification rely on crosstalk between the innate and adaptive arms of the immune system. The cellular and cytokine networks which mediate this interplay, however, are not well understood. We previously identified a colitogenic CD4+ IL-23R+ CD11c+ T cell population that possesses an innate-like gene expression signature, indicating that these cells appear to be positioned at the interface of the innate and adaptive arms of the immune system. Notably, we also observed that these cells had increased expression of bhlhe40 which is a transcription factor that has been shown to regulate the production of GM-CSF. Given the well characterized ability of GM-CSF to activate myeloid cell populations in autoimmunity, we sought to define the role of this transcription factor and cytokine as a potential bridge between innate and adaptive immunity in GVHD. Using a well-defined murine GVHD model [C57BL/6 (H-2b)→Balb/c (H-2d)], we observed that mice transplanted with Rag-1-/- bone marrow (BM) and CD4+ bhlhe40-/- T cells were completely protected from GVHD, whereas animals transplanted with Rag-1-/- BM and wild type (WT) CD4+ T cells uniformly developed lethal disease. Further analysis revealed that CD4+ bhlhe40-/- T cells produced less GM-CSF and more IL-10 than their WT counterparts, and had preferentially less pathological damage in the colon. To examine the specific role of GM-CSF, we employed the same GVHD model along with a corresponding syngeneic control (B6→B6.PL). We observed robust GM-CSF production in allogeneic, but not syngeneic, recipients in all GVHD target tissues, but most prominently in the colon. This was largely attributable to donor-derived CD4+ T cells, as there was little GM-CSF produced by CD8+ T cells. Notably, whereas the vast majority (~80%) of these cells in the lung and liver also produced IFN-γ, ~50% of GM-CSF-expressing CD4+ T cells in the colon only produced GM-CSF, suggesting that these cells might represent a separate CD4+ T cell lineage. In that regard, antibody blockade of IL-6, IL-23 and IL-27 had no effect on the frequency of CD4+ GM-CSF+ T cells, indicating that the development of these cells was not regulated by cytokines affecting TH1 and TH17 differentiation. To define the functional significance of donor T cell-derived GM-CSF, recipients were transplanted with BM or BM plus splenocytes from WT or GM-CSF-/- animals. Recipients of GM-CSF-/- grafts had significantly increased survival when compared to WT controls. Furthermore, histological analysis demonstrated a significant reduction in pathology in the colon of animals that received GM-CSF-/- grafts, as well as a decrease in infiltrating TH1 cells, whereas there was no difference in pathological damage in the lung or liver. A similar outcome was observed in complementary experiments in which recipient animals that were treated with an anti-GM-CSF antibody had significantly increased survival compared to mice treated with an isotype control antibody. To confirm a role for GM-CSF signaling in CD4+ T cells, Balb/c recipients were transplanted with Rag-1-/- BM alone or together with purified CD4+ T cells from WT or GM-CSF-/- mice. Mice that received CD4+ GM-CSF-/- T cells had a significant increase in survival compared to those that received WT CD4+ T cells, confirming a proinflammatory role for GM-CSF production by donor CD4+ T cells. Given that GM-CSF acts on a diverse subset of innate immune cells, we then examined which myeloid cell subsets were responsive to GM-CSF two weeks post-transplantation when donor APCs have repopulated the APC compartment. Using established markers for macrophages, neutrophils, and dendritic cells, we observed no difference in the number of donor macrophages or neutrophils between groups. However, there was a significant reduction in dendritic cells (DCs) in the colon of mice receiving CD4+ GM-CSF-/- T cells, and donor-derived DCs were virtually absent from the mesenteric lymph nodes, indicating that GM-CSF facilitates the accumulation of DCs in the GI tract and associated lymphoid tissue during GVHD. Collectively, these studies demonstrate that a CD4+ T cell-intrinsic bhlhe40/GM-CSF axis potentiates gastrointestinal inflammation during GVHD by promoting inflammatory cytokine production and DC recruitment. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 212 (11) ◽  
pp. 1869-1882 ◽  
Author(s):  
Christina Song ◽  
Jacob S. Lee ◽  
Susan Gilfillan ◽  
Michelle L. Robinette ◽  
Rodney D. Newberry ◽  
...  

Group 3 ILCs (ILC3s) are innate sources of IL-22 and IL-17 and include lymphoid tissue-inducer (LTi)-like and NKp46+ subsets. Both depend on RORγt and aryl hydrocarbon receptor, but NKp46+ILC3s also require Notch and T-bet for their development and are transcriptionally distinct. The extent to which these subsets have unique functions, especially in the context of T cell– and B cell–sufficient mice, remains largely unclear. To investigate the specific function of NKp46+ILC3s among other ILC3 subsets and T cells, we generated mice selectively lacking NKp46+ILC3s or all ILC3s and crossed them to T cell–deficient mice, thus maintaining B cells in all mice. In mice lacking T cells, NKp46+ILC3s were sufficient to promote inflammatory monocyte accumulation in the anti-CD40 innate colitis model through marked production of GM-CSF. In T cell–competent mice, lack of NKp46+ILCs had no impact on control of intestinal C. rodentium infection, whereas lack of all ILC3s partially impaired bacterial control. Thus, NKp46+ILC3s have a unique capacity to promote inflammation through GM-CSF–induced accumulation of inflammatory monocytes, but are superseded by LTi-like ILC3s and T cells in controlling intestinal bacterial infection.


Author(s):  
Ornella Sortino ◽  
Joana Dias ◽  
Megan Anderson ◽  
Elizabeth Laidlaw ◽  
Edwin Leeansyah ◽  
...  

Abstract Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional, MR1-restricted T-cells involved in antimicrobial responses as well as inflammatory, allergic and autoimmune diseases. Chronic infection and inflammatory disorders as well as immunodeficiencies are often associated with decline and/or dysfunction of MAIT cells. Herein, we investigate the MAIT cells in patients with idiopathic CD4 + lymphocytopenia (ICL), a syndrome characterized by consistently low CD4 T-cell counts (<300 cell/µL) in the absence of HIV infection or other known immunodeficiency, and by susceptibility to certain opportunistic infections. The numbers, phenotype and function of MAIT cells in peripheral blood were preserved in ICL patients compared to healthy controls. Furthermore, administration of IL-7 to ICL patients expanded the CD8 + MAIT cell subset, with maintained responsiveness and effector functions after IL-7 treatment. In conclusion, ICL patients maintain normal levels and function of MAIT cells preserving some antibacterial responses despite the deficiency in CD4 + T cells.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105627 ◽  
Author(s):  
Kirsten Reichwald ◽  
Tina Z. Jørgensen ◽  
Søren Skov
Keyword(s):  
T Cells ◽  
Gm Csf ◽  

Sign in / Sign up

Export Citation Format

Share Document