GM-CSF production by CD4+ T cells in MS patients: Regulation by regulatory T cells and vitamin D

2015 ◽  
Vol 280 ◽  
pp. 36-42 ◽  
Author(s):  
E. Peelen ◽  
A.-H. Muris ◽  
J. Damoiseaux ◽  
S. Knippenberg ◽  
K. Broens ◽  
...  
2016 ◽  
Vol 213 (12) ◽  
pp. 2793-2809 ◽  
Author(s):  
Anda I. Meierovics ◽  
Siobhán C. Cowley

Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4+ T cells to the lungs after pulmonary F. tularensis LVS infection. Here, we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell–deficient mice (MR1−/− mice) rescued their defect in the recruitment of activated CD4+ T cells to the lungs. We further demonstrate that MAIT cell–dependent GM-CSF production stimulated monocyte differentiation in vitro, and that in vivo production of GM-CSF was delayed in the lungs of MR1−/− mice. Finally, GM-CSF–deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1−/− mice. Overall, our data demonstrate that MAIT cells promote early pulmonary GM-CSF production, which drives the differentiation of inflammatory monocytes into Mo-DCs. Further, this delayed differentiation of Mo-DCs in MR1−/− mice was responsible for the delayed recruitment of activated CD4+ T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24091 ◽  
Author(s):  
Valeria Judkowski ◽  
Alcinette Bunying ◽  
Feng Ge ◽  
Jon R. Appel ◽  
Kingyee Law ◽  
...  

2011 ◽  
Vol 186 (9) ◽  
pp. 5468-5477 ◽  
Author(s):  
Ian K. Campbell ◽  
Annemarie van Nieuwenhuijze ◽  
Elodie Segura ◽  
Kristy O’Donnell ◽  
Elise Coghill ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (8) ◽  
pp. 568-581 ◽  
Author(s):  
Clint Piper ◽  
Vivian Zhou ◽  
Richard Komorowski ◽  
Aniko Szabo ◽  
Benjamin Vincent ◽  
...  

Abstract Gastrointestinal (GI) tract involvement is the major cause of morbidity and mortality in acute graft-versus-host disease (GVHD), and pathological damage is largely attributable to inflammatory cytokine production. Recently, granulocyte-macrophage colony stimulating factor (GM-CSF) has been identified as a cytokine that mediates inflammation in the GI tract, but the transcriptional program that governs GM-CSF production and the mechanism by which GM-CSF links adaptive to innate immunity within this tissue site have not been defined. In the current study, we identified Bhlhe40 as a key transcriptional regulator that governs GM-CSF production by CD4+ T cells and mediates pathological damage in the GI tract during GVHD. In addition, we observed that GM-CSF was not regulated by either interleukin 6 (IL-6) or IL-23, which are both potent inducers of GVHD-induced colonic pathology, indicating that GM-CSF constitutes a nonredundant inflammatory pathway in the GI tract. Mechanistically, GM-CSF had no adverse effect on regulatory T-cell reconstitution, but linked adaptive to innate immunity by enhancing the activation of donor-derived dendritic cells in the colon and subsequent accumulation of these cells in the mLNs. In addition, GM-CSF promoted indirect alloantigen presentation, resulting in the accumulation of donor-derived T cells with a proinflammatory cytokine phenotype in the colon. Thus, Bhlhe40+ GM-CSF+ CD4+ T cells constitute a colitogenic T-cell population that promotes indirect alloantigen presentation and pathological damage within the GI tract, positioning GM-CSF as a key regulator of GVHD in the colon and a potential therapeutic target for amelioration of this disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 62-62
Author(s):  
Clint Piper ◽  
Vivan Zhou ◽  
Brian T. Edelson ◽  
Reshma Taneja ◽  
William R. Drobyski

Abstract Damage to the gastrointestinal tract is the major cause of morbidity during acute graft-versus-host disease (GVHD). While T cells are the proximate drivers of GVHD, disease induction and amplification rely on crosstalk between the innate and adaptive arms of the immune system. The cellular and cytokine networks which mediate this interplay, however, are not well understood. We previously identified a colitogenic CD4+ IL-23R+ CD11c+ T cell population that possesses an innate-like gene expression signature, indicating that these cells appear to be positioned at the interface of the innate and adaptive arms of the immune system. Notably, we also observed that these cells had increased expression of bhlhe40 which is a transcription factor that has been shown to regulate the production of GM-CSF. Given the well characterized ability of GM-CSF to activate myeloid cell populations in autoimmunity, we sought to define the role of this transcription factor and cytokine as a potential bridge between innate and adaptive immunity in GVHD. Using a well-defined murine GVHD model [C57BL/6 (H-2b)→Balb/c (H-2d)], we observed that mice transplanted with Rag-1-/- bone marrow (BM) and CD4+ bhlhe40-/- T cells were completely protected from GVHD, whereas animals transplanted with Rag-1-/- BM and wild type (WT) CD4+ T cells uniformly developed lethal disease. Further analysis revealed that CD4+ bhlhe40-/- T cells produced less GM-CSF and more IL-10 than their WT counterparts, and had preferentially less pathological damage in the colon. To examine the specific role of GM-CSF, we employed the same GVHD model along with a corresponding syngeneic control (B6→B6.PL). We observed robust GM-CSF production in allogeneic, but not syngeneic, recipients in all GVHD target tissues, but most prominently in the colon. This was largely attributable to donor-derived CD4+ T cells, as there was little GM-CSF produced by CD8+ T cells. Notably, whereas the vast majority (~80%) of these cells in the lung and liver also produced IFN-γ, ~50% of GM-CSF-expressing CD4+ T cells in the colon only produced GM-CSF, suggesting that these cells might represent a separate CD4+ T cell lineage. In that regard, antibody blockade of IL-6, IL-23 and IL-27 had no effect on the frequency of CD4+ GM-CSF+ T cells, indicating that the development of these cells was not regulated by cytokines affecting TH1 and TH17 differentiation. To define the functional significance of donor T cell-derived GM-CSF, recipients were transplanted with BM or BM plus splenocytes from WT or GM-CSF-/- animals. Recipients of GM-CSF-/- grafts had significantly increased survival when compared to WT controls. Furthermore, histological analysis demonstrated a significant reduction in pathology in the colon of animals that received GM-CSF-/- grafts, as well as a decrease in infiltrating TH1 cells, whereas there was no difference in pathological damage in the lung or liver. A similar outcome was observed in complementary experiments in which recipient animals that were treated with an anti-GM-CSF antibody had significantly increased survival compared to mice treated with an isotype control antibody. To confirm a role for GM-CSF signaling in CD4+ T cells, Balb/c recipients were transplanted with Rag-1-/- BM alone or together with purified CD4+ T cells from WT or GM-CSF-/- mice. Mice that received CD4+ GM-CSF-/- T cells had a significant increase in survival compared to those that received WT CD4+ T cells, confirming a proinflammatory role for GM-CSF production by donor CD4+ T cells. Given that GM-CSF acts on a diverse subset of innate immune cells, we then examined which myeloid cell subsets were responsive to GM-CSF two weeks post-transplantation when donor APCs have repopulated the APC compartment. Using established markers for macrophages, neutrophils, and dendritic cells, we observed no difference in the number of donor macrophages or neutrophils between groups. However, there was a significant reduction in dendritic cells (DCs) in the colon of mice receiving CD4+ GM-CSF-/- T cells, and donor-derived DCs were virtually absent from the mesenteric lymph nodes, indicating that GM-CSF facilitates the accumulation of DCs in the GI tract and associated lymphoid tissue during GVHD. Collectively, these studies demonstrate that a CD4+ T cell-intrinsic bhlhe40/GM-CSF axis potentiates gastrointestinal inflammation during GVHD by promoting inflammatory cytokine production and DC recruitment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2151-2151
Author(s):  
Hideaki Yoshimura ◽  
Masaaki Hotta ◽  
Atsushi Satake ◽  
Shosaku Nomura

Abstract Regulatory T cells (Tregs) possess the ability to suppress chronic graft-versus-host disease (cGVHD). Hence, the in vivo expansion of Tregs can be used as therapy against cGvHD. In addition to IL-2, Tregs require TCR and costimulatory signals from antigen presenting cells such as dendritic cells (DCs) for their optimal proliferation. Both fms-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony stimulation factor (GM-CSF) induce the development of DCs and promote the proliferation of Tregs in a DC-dependent manner. GM-CSF preferentially increases CD11c+CD8a- DCs, whereas FLT3L more equally supports the development of many DC subsets. However, it is unknown whether GM-CSF-mediated CD11c+CD8a- DC expansion leads to the proliferation of Tregs and contributes to the inhibition of alloimmune responses against host antigens. To test whether the injection of GM-CSF augments Tregs and ameliorates cGVHD, we used a MHC-matched mouse cGVHD model (B10.D2 → Balb/c). Balb/c mice were lethally irradiated (850 cGy) and transplanted with 8 × 106 T cell-depleted bone marrow cells and 3.5 × 106 CD4+ T cells from either syngeneic or B10.D2 mice. Host mice were treated with vehicle or GM-CSF (in the form of immune complexes; GM-CSF ICs) for 3 days (days 17-19) and monitored for skin GVHD score and mortality. We used GM-CSF ICs because the injection of GM-CSF ICs but not GM-CSF itself increased splenic CD11c+CD8a- DCs and Tregs. The administration of GM-CSF to allogeneic host mice significantly protected against GVHD-induced skin diseases (p<0.001) (Fig 1). Similar results were obtained when GM-CSF ICs were administrated at a later stage (days 27-29). Although CD11c+CD8- DCs were decreased in mice transplanted from the allogeneic donor compared with mice transplanted from the syngeneic donor, the administration of GM-CSF increased the CD11c+CD8a-/CD11c+CD8a+ DC ratio. However, the expansion of macrophages was not observed in mice administered GM-CSF. Expectedly, the administration of GM-CSF increased Tregs in the peripheral blood and the peripheral lymph nodes (PLNs) (P<0.05) (Fig 2). We investigated the production of proinflammatory cytokines (IFN-g, IL-17) of CD4+ T cells in the spleen, PLNs, and the skin by intracellular cytokine staining, as these cytokines are important for cGVHD pathogenesis in this model. The proportion of IFN-g+CD4+ T cells in the spleen and PLNs was slightly but not significantly decreased in GM-CSF-administered mice. The proportion of IL-17+CD4+ T cells in the skin was decreased in GM-CSF-administered mice compared to vehicle-administered mice. We next investigated the production of IL-2 and IL-10, as these cytokines are associated with survival and function of Tregs. Skin infiltrating Tregs were not increased in GM-CSF-administered mice compared to vehicle-administered mice; however, the proportion of IL-10+ Tregs was increased in GM-CSF-administered mice. The proportion of IL-2+CD4+ T cells was comparable in the allogeneic host with or without GM-CSF, indicating that GM-CSF-induced Treg expansion did not result from an increase in IL-2 production by CD4+ T cells. Together, these data suggest that GM-CSF induces the proliferation of Tregs by expanding CD11c+CD8a- DCs, and can regulate alloimmune responses in a cGVHD mouse model. Our findings indicate the potential of GM-CSF as a therapeutic strategy to ameliorate cGVHD. Disclosures No relevant conflicts of interest to declare.


Oncotarget ◽  
2017 ◽  
Vol 8 (32) ◽  
pp. 53552-53562 ◽  
Author(s):  
Dong Lu ◽  
Bin Lan ◽  
Zonren Din ◽  
Hang Chen ◽  
Guoqiang Chen

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105627 ◽  
Author(s):  
Kirsten Reichwald ◽  
Tina Z. Jørgensen ◽  
Søren Skov
Keyword(s):  
T Cells ◽  
Gm Csf ◽  

2021 ◽  
Vol 22 (10) ◽  
pp. 5251
Author(s):  
Ming-Yieh Peng ◽  
Wen-Chih Liu ◽  
Jing-Quan Zheng ◽  
Chien-Lin Lu ◽  
Yi-Chou Hou ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin–angiotensin–aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill’s causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Zorica Stojić-Vukanić ◽  
Mirjana Nacka-Aleksić ◽  
Ivan Pilipović ◽  
Ivana Vujnović ◽  
Veljko Blagojević ◽  
...  
Keyword(s):  
T Cells ◽  
Gm Csf ◽  

Sign in / Sign up

Export Citation Format

Share Document