scholarly journals The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes

2017 ◽  
Vol 214 (11) ◽  
pp. 3293-3310 ◽  
Author(s):  
Atsushi Anzai ◽  
Jennifer L. Choi ◽  
Shun He ◽  
Ashley M. Fenn ◽  
Manfred Nairz ◽  
...  

Myocardial infarction (MI) elicits massive inflammatory leukocyte recruitment to the heart. Here, we hypothesized that excessive leukocyte invasion leads to heart failure and death during acute myocardial ischemia. We found that shortly and transiently after onset of ischemia, human and mouse cardiac fibroblasts produce granulocyte/macrophage colony-stimulating factor (GM-CSF) that acts locally and distally to generate and recruit inflammatory and proteolytic cells. In the heart, fibroblast-derived GM-CSF alerts its neighboring myeloid cells to attract neutrophils and monocytes. The growth factor also reaches the bone marrow, where it stimulates a distinct myeloid-biased progenitor subset. Consequently, hearts of mice deficient in either GM-CSF or its receptor recruit fewer leukocytes and function relatively well, whereas mice producing GM-CSF can succumb from left ventricular rupture, a complication mitigated by anti–GM-CSF therapy. These results identify GM-CSF as both a key contributor to the pathogenesis of MI and a potential therapeutic target, bolstering the idea that GM-CSF is a major orchestrator of the leukocyte supply chain during inflammation.

1996 ◽  
Vol 270 (4) ◽  
pp. L650-L658 ◽  
Author(s):  
M. Ikegami ◽  
T. Ueda ◽  
W. Hull ◽  
J. A. Whitsett ◽  
R. C. Mulligan ◽  
...  

Mice made granulocyte macrophage-colony stimulating factor (GM-CSF)-deficient by homologous recombination maintain normal steady-state hematopoiesis but have an alveolar accumulation of surfactant lipids and protein that is similar to pulmonary alveolar proteinosis in humans. We asked how GM-CSF deficiency alters surfactant metabolism and function in mice. Alveolar and lung tissue saturated phosphatidylcholine (Sat PC) were increased six- to eightfold in 7- to 9-wk-old GM-CSF-deficient mice relative to controls. Incorporation of radiolabeled palmitate and choline into Sat PC was higher in GM-CSF deficient mice than control mice, and no loss of labeled Sat PC occurred from the lungs of GM-CSF-deficient mice. Secretion of radiolabeled Sat PC to the alveolus was similar in GM-CSF-deficient and control mice. Labeled Sat PC and surfactant protein A (SP-A) given by tracheal instillation were cleared rapidly in control mice, but there was no measurable loss from the lungs of GM-CSF-deficient mice. The function of the surfactant from GM-CSF-deficient mice was normal when tested in preterm surfactant-deficient rabbits. GM-CSF deficiency results in a catabolic defect for Sat PC and SP-A.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 27-35 ◽  
Author(s):  
GJ Lieschke ◽  
E Stanley ◽  
D Grail ◽  
G Hodgson ◽  
V Sinickas ◽  
...  

Abstract Mice deficient in granulocyte-macrophage colony-stimulating factor (GM- CSF) and macrophage colony-stimulating factor (M-CSF, CSF-1) were generated by interbreeding GM-CSF-deficient mice generated by gene targeting (genotype GM-/-) with M-CSF-deficient osteopetrotic mice (genotype M-/-, op/op). Mice deficient in both GM-CSF and M-CSF (genotype GM-/-M-/-) are viable and have coexistent features corresponding to mice deficient in either factor alone. Like M-CSF- deficient mice, they have osteopetrosis and are toothless because of failure of incisor eruption. Like GM-CSF-deficient mice, they have a characteristic alveolar-proteinosis-like lung pathology, but it is more severe than that of GM-CSF-deficient mice and is often fatal. In particular, in GM-/-M-/- mice the accumulation of lipo-proteinaceous alveolar material is more marked, and bacterial pneumonic infections are more prevalent and more extensive, particularly involving Gram- negative bacteria. Neutrophilia consistently accompanies pulmonary infections, and some older GM-/-M-/- mice have polycythemia. Survival of GM-/-M-/- mice is significantly reduced compared with mice deficient in either factor alone, and all GM-/-M-/- mice have broncho- or lobar- pneumonia at death. These observations indicate that in vivo, M-CSF is involved in modulating the consequences of GM-CSF deficiency in the lung. Interestingly, GM-/-M-/- mice have circulating monocytes at levels comparable with those in M-CSF-deficient mice and the diseased lungs of all GM-/-M-/- mice contain numerous phagocytically active macrophages, indicating that in addition to GM-CSF and M-CSF, other factors can be used for macrophage production and function in vivo.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4174-4185 ◽  
Author(s):  
PT Jubinsky ◽  
AS Laurie ◽  
DG Nathan ◽  
J Yetz-Aldepe ◽  
CA Sieff

To determine the expression and function of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha chain (GMR alpha) during hematopoiesis and on leukemic cells, monoclonal antibodies were raised by immunizing mice with cells expressing high levels of human GMR alpha. A pool of five antibodies isolated from three different mice was used to characterize GMR alpha. This antibody pool (anti-GMR alpha) immunoprecipitated a protein with the expected molecular weight of GMR alpha from COS cells transiently transfected with the GMR alpha gene. In factor-dependent cells, GMR alpha existed as a phosphoprotein. However, its phosphorylation was not stimulated by the presence of GM- CSF. Anti-GMR alpha inhibited the GM-CSF-dependent growth of cell lines and normal bone marrow cells and inhibited the binding of iodinated GM- CSF to its receptor. Cell surface expression of GMR alpha was examined using anti-GMR alpha and flow cytometry. GMR alpha was readily detectable on both blood monocytes and neutrophils. In adherence- depleted normal bone marrow, two separate populations expressed GMR alpha. The most positive cells were predominantly macrophages, whereas the cells that expressed less GMR alpha were largely myelocytes and metamyelocytes. A small population of lin-CD34+ or CD34+CD38- cells also expressed GMR alpha, but they were not capable of significant growth in colony-forming assays. In contrast, the majority of lin-CD34+ and CD34+CD38- cells were GMR alpha-, yet they produced large numbers of myeloid and erythroid colonies in the same assay. Malignant cells from patients with leukemia were also tested for GMR alpha expression. All of the myeloid leukemias and only rare lymphoid leukemias surveyed tested positive for GMR alpha. These results show that anti-GMR alpha is useful for the functional characterization of the GMR alpha and for the detection of myeloid leukemia and that GMR alpha is expressed on certain lineages throughout hematopoietic development; however, progenitors that express the receptor may have a reduced capacity to proliferate in response to hematopoietic growth factors.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 27-35 ◽  
Author(s):  
GJ Lieschke ◽  
E Stanley ◽  
D Grail ◽  
G Hodgson ◽  
V Sinickas ◽  
...  

Mice deficient in granulocyte-macrophage colony-stimulating factor (GM- CSF) and macrophage colony-stimulating factor (M-CSF, CSF-1) were generated by interbreeding GM-CSF-deficient mice generated by gene targeting (genotype GM-/-) with M-CSF-deficient osteopetrotic mice (genotype M-/-, op/op). Mice deficient in both GM-CSF and M-CSF (genotype GM-/-M-/-) are viable and have coexistent features corresponding to mice deficient in either factor alone. Like M-CSF- deficient mice, they have osteopetrosis and are toothless because of failure of incisor eruption. Like GM-CSF-deficient mice, they have a characteristic alveolar-proteinosis-like lung pathology, but it is more severe than that of GM-CSF-deficient mice and is often fatal. In particular, in GM-/-M-/- mice the accumulation of lipo-proteinaceous alveolar material is more marked, and bacterial pneumonic infections are more prevalent and more extensive, particularly involving Gram- negative bacteria. Neutrophilia consistently accompanies pulmonary infections, and some older GM-/-M-/- mice have polycythemia. Survival of GM-/-M-/- mice is significantly reduced compared with mice deficient in either factor alone, and all GM-/-M-/- mice have broncho- or lobar- pneumonia at death. These observations indicate that in vivo, M-CSF is involved in modulating the consequences of GM-CSF deficiency in the lung. Interestingly, GM-/-M-/- mice have circulating monocytes at levels comparable with those in M-CSF-deficient mice and the diseased lungs of all GM-/-M-/- mice contain numerous phagocytically active macrophages, indicating that in addition to GM-CSF and M-CSF, other factors can be used for macrophage production and function in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


2021 ◽  
Vol 14 (5) ◽  
pp. 459
Author(s):  
Mariya Pykhtina ◽  
Svetlana Miroshnichenko ◽  
Vladimir Romanov ◽  
Antonina Grazhdantseva ◽  
Galina Kochneva ◽  
...  

In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Sign in / Sign up

Export Citation Format

Share Document