scholarly journals The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation

2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Masahiro Kiuchi ◽  
Atsushi Onodera ◽  
Kota Kokubo ◽  
Tomomi Ichikawa ◽  
Yuki Morimoto ◽  
...  

Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.

2016 ◽  
Vol 137 (2) ◽  
pp. AB175
Author(s):  
Ulus Atasoy ◽  
Patsharaporn Techasintana ◽  
Jacqueline Glascock ◽  
Suzanne Ridenhour ◽  
Joseph Magee ◽  
...  

2021 ◽  
Author(s):  
Helena Strand Clemmensen ◽  
Jean-Yves Dube ◽  
Fiona McIntosh ◽  
Ida Rosenkrands ◽  
Gregers Jungersen ◽  
...  

AbstractNew vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to IFN-γ or nutrient/oxygen deprivation of in vitro infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analysed their corresponding CD4 T cell phenotype and vaccine-protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination and, against the overexpressing strain, vaccination with MPT70 conferred similar protection as ESAT-6. Together our data indicate that high in vivo antigen expression drives T cells towards terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less-differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune-balance in favor of the host.ImportanceTuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current COVID-19 pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunisation with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


2008 ◽  
Vol 96 (3) ◽  
pp. 528-534 ◽  
Author(s):  
E.W. P. NIJHUIS ◽  
E. J. REMARQUE ◽  
B. HINLOOPEN ◽  
T. POUW-KRAAN ◽  
R. A. W. LIER ◽  
...  

2017 ◽  
Vol 313 (3) ◽  
pp. L592-L601 ◽  
Author(s):  
Xiao-Ming Li ◽  
Xi Chen ◽  
Wen Gu ◽  
Yi-Jia Guo ◽  
Yi Cheng ◽  
...  

CD4+ T-cell differentiation plays an important role in allergic airway diseases. Tumor necrosis factor receptor 2 (TNFR2) has been shown to regulate CD4+ T-lymphocyte differentiation, but its role in allergic airway inflammation is not clear. Here, we investigated the role of TNFR2 in allergic airway inflammation. The mouse model was generated by immunization with ovalbumin and intranasal administration of TNFR2 antibody. Airway inflammation and CD4+ T-cell differentiation were measured in vivo and in vitro. Inhibited TNFR2 signaling aggravated airway inflammation and increased the expression of inflammatory cytokines (IL-4, IL-5, IL-17, and TNF-α) in serum and bronchoalveolar lavage fluid. Impaired TNFR2 signaling promoted Th2 and Th17 polarization but inhibited Th1 and CD4+CD25+ T-cell differentiation in vivo. Furthermore, TNFR2 signaling inhibition promoted Th2 and Th17 polarization in vitro, which may occur through the activation of TNF receptor-associated factor 2 and NF-κB signaling. Therefore, our findings indicate that impaired TNF/TNFR2 signaling enhances Th2 and Th17 polarization and aggravates allergic airway inflammation.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Helena Strand Clemmensen ◽  
Jean-Yves Dube ◽  
Fiona McIntosh ◽  
Ida Rosenkrands ◽  
Gregers Jungersen ◽  
...  

ABSTRACT New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host. IMPORTANCE Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunization with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document