scholarly journals Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin.

1996 ◽  
Vol 108 (5) ◽  
pp. 421-433 ◽  
Author(s):  
J B Sørensen ◽  
E H Larsen

The isolated epithelium of toad skin was disintegrated into single cells by treatment with collagenase and trypsine. Chloride channels of cell-attached and excised inside-out apical membrane-patches of mitochondria-rich cells were studied by the patch-clamp technique. The major population of Cl- channels constituted small 7-pS linear channels in symmetrical solutions (125 mM Cl-). In cell-attached and inside-out patches the single channel i/V-relationship could be described by electrodiffusion of Cl- with a Goldmann-Hodgkin-Katz permeability of, PCl = 1.2 x 10(-14) - 2.6 x 10(-14) cm3. s-1. The channel exhibited voltage-independent activity and could be activated by cAMP. This channel is a likely candidate for mediating the well known cAMP-induced transepithelial Cl- conductance of the amphibian skin epithelium. Another population of Cl- channels exhibited large, highly variable conductances (upper limit conductances, 150-550 pS) and could be activated by membrane depolarization. A group of intermediate-sized Cl(-)-channels included: (a) channels (mean conductance, 30 pS) with linear or slightly outwardly rectifying i/V-relationships and activity occurring in distinct "bursts," (b) channels (conductance-range, 10-27 pS) with marked depolarization-induced activity, and (c) channels with unresolvable kinetics. The variance of current fluctuations of such "noisy" patches exhibited a minimum close to the equilibrium-potential for Cl-. With channels occurring in only 38% of sealed patches and an even lower frequency of voltage-activated channels, the chloride conductance of the apical membrane of mitochondria-rich cells did not match quantitatively that previously estimated from macroscopic Ussing-chamber experiments. From a qualitative point of view, however, we have succeeded in demonstrating the existence of Cl-channels in the apical membrane with features comparable to macroscopic predictions, i.e., activation of channel gating by cAMP and, in a few patches, also by membrane depolarization.

1994 ◽  
Vol 266 (4) ◽  
pp. F543-F553 ◽  
Author(s):  
V. Poncet ◽  
M. Tauc ◽  
M. Bidet ◽  
P. Poujeol

Using the patch clamp technique on the apical membrane of primary cultures of rabbit distal bright convoluted tubule cells (DCTb), two types of Cl- channel were identified. A small channel of 9 pS was observed in 9% of the patches. Cells pretreated with 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) or 5 microM forskolin increased the expression of Cl- channels by 26 and 37%, respectively. In cell-attached and excised inside-out patches, the current-voltage (I-V) relationships of the 9-pS channel were linear. In only 1 out of 47 active patches was the small-conductance Cl- channel still active 1 h after membrane excision. The addition of 0.1 microM of the catalytic subunit protein kinase A with 2 mM ATP to the cytoplasmic side restored channel activity in 8 out of 15 excised membrane patches. In 5 out of 467 patches of stimulated or nonstimulated cells, a larger Cl- conductance of 30 pS was also recorded. In excised inside-out patches this channel outwardly rectified and was activated by strong depolarization. In cultured DCTb cells, the small-conductance, cAMP-activated Cl- channel shares many properties with the cystic fibrosis transmembrane conductance regulator. Our results suggest that at least the small-conductance channel may participate in Cl- secretion across the apical membrane of DCTb in primary culture. This secretion may increase the rate of the apical Cl-/HCO3- exchange indirectly by enhancing the inwardly-directed Cl- gradient.


1991 ◽  
Vol 260 (5) ◽  
pp. C1000-C1011 ◽  
Author(s):  
G. Saccomani ◽  
C. G. Psarras ◽  
P. R. Smith ◽  
K. L. Kirk ◽  
R. L. Shoemaker

The electrical properties of the apical membrane of isolated rabbit parietal cells were studied using the patch-clamp technique. The apical membrane of the parietal cells plated on Matrigel and maintained in culture conditions was identified by lectin-binding studies. Cell-attached and excised inside-out patches from 10(-4) M cimetidine-treated parietal cells infrequently contained Cl- channels (9% of the patches). A single class of voltage-dependent outwardly rectifying Cl- channels with 24 +/- 1-pS conductance was observed in 75% of the patches from cells stimulated (acid secreting) by 10(-4) M histamine. Other anions passed through these channels with a permeability sequence of I- (1.2) greater than Br- (1.1) greater than or equal to Cl- (1.0) greater than NO3- (0.7) greater than SO4(2-) (0.1), but there was a very low permeability for Na+ or K+ (PCl-/PNa+ or PCl-/PK+ greater than 5). In inside-out patch configurations the Cl- channel was insensitive to Ba2+ and stilbene derivatives but was inhibited by diphenylamine-2-carboxylic acid in a manner characteristic of a reversible open-channel blocker. It is concluded that H2-receptor agonist stimulation of acid secretion by rabbit parietal cells activates Cl- channels in the apical cell membrane.


2003 ◽  
Vol 121 (4) ◽  
pp. 287-300 ◽  
Author(s):  
Stéphane Lourdel ◽  
Marc Paulais ◽  
Pedro Marvao ◽  
Antoine Nissant ◽  
Jacques Teulon

The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl− cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl− transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl− channels on microdissected mouse DCTs using the patch-clamp technique. A channel of ∼9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10−5 M forskolin, but the channel was inhibited by phorbol ester (10−6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl− relative permeability was 0.09, and the anion selectivity sequence Cl− ∼ I−> Br− ∼ NO3− > F−. Intracellular NPPB (10−4 M) and DPC (10−3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl− channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.


1994 ◽  
Vol 104 (2) ◽  
pp. 357-373 ◽  
Author(s):  
S Koumi ◽  
R Sato ◽  
T Aramaki

Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.


1992 ◽  
Vol 68 (6) ◽  
pp. 2042-2050 ◽  
Author(s):  
N. Hussy

1. Single-channel currents were recorded from Xenopus spinal neurons developing in vitro using the patch-clamp technique, to identify the channels underlying the large and small macroscopic Ca(2+)-activated Cl- currents (ICl(Ca)) present in these cells. 2. Channels of large (maxi-channels; 310 pS) and smaller conductance (mini-channels; 50-60 pS) are activated by elevation of cytoplasmic Ca2+ concentration. Channel activity is not altered by subsequent removal of Ca2+ from the bath, arguing against a direct ligand-type Ca2+ dependence. The much higher incidence of channel activation in cell-attached patches from cells permeabilized with the Ca2+ ionophore A23187 than in excised patches also suggests the involvement of some unidentified intracellular factor. 3. The reversal potential of maxi-Cl- channels is not altered by changes in Na+ concentration, but is shifted in the negative direction by the substitution of Cl- by methanesulfonate on the intracellular side of the patch, indicating their anionic selectivity. 4. Maxi-Cl- channels exhibited the presence of multiple probable subconductance states and showed marked voltage-dependent inactivation above and below +/- 20 mV. 5. Examination of maxi-Cl- channels at early times in culture (6-9 h) and 24 h later did not reveal any developmental change in the characteristics described above. However, the mean open duration of the channel was found to increase twofold during this period of time. 6. The simultaneous presence of maxi- and mini-Cl- channels prevented detailed characterization of the latter. The anionic selectivity of mini-Cl- channels is suggested by their reversal potential that lies close to the Cl- equilibrium potential.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 263 (2) ◽  
pp. F243-F250 ◽  
Author(s):  
P. Dietl ◽  
B. A. Stanton

Previously, we found that isoproterenol activates whole cell Cl- conductance by a pathway involving adenosine 3',5'-cyclic monophosphate and protein kinase A (PKA) in a renal cell line (RCCT-28A) derived from the cortical collecting duct. The goal of the present study was to determine whether PKA activates Cl- channels in the apical and/or basolateral membrane. Using the patch clamp technique we found a 305-pS Cl- channel, described previously (22), located exclusively in the apical membrane and an outwardly rectifying Cl- channel (13/96 pS) located exclusively in the basolateral membrane. The outward rectifier was highly selective to Cl- versus cations, was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, but was not regulated by cytoplasmic pH or Ca2+. Neither isoproterenol nor PKA activated the 305-pS Cl- channel. In contrast, PKA activated a subset of outwardly rectifying channels in inside-out patches. In another subset of outwardly rectifying channels, formation of the inside-out configuration increased channel activity. These channels, however, were not sensitive to PKA. In conclusion, these experiments show that isoproterenol increases the Cl- conductance of RCCT-28A cells by activating a subset of outwardly rectifying Cl- channels located in the basolateral membrane.


1994 ◽  
Vol 267 (3) ◽  
pp. C857-C864 ◽  
Author(s):  
D. C. Marcus ◽  
Z. Shen

Dark cell epithelium secretes K+ into the lumen of the vestibular labyrinth by a previously unidentified apical transport mechanism. Previous single-channel patch-clamp studies demonstrated nonselective cation channels and maxi-K+ channels in the apical membrane, but in too low a density to account for transepithelial K+ transport. In this report, we demonstrated with the cell-attached macro-patch-clamp technique an outward apical membrane current at 0-mV pipette voltage, which was stimulated by elevating bath K+ concentration from 3.6 to 25 mM and inhibited by 10 microM bumetanide, similar to their known effects on transepithelial short-circuit current and K+ secretion. Furthermore, the patch current was activated over several seconds by a sustained depolarization and deactivated over several hundred milliseconds by a hyperpolarization. Current-voltage relationships from tail currents were obtained with either NaCl or KCl in the pipette. Depolarization from -40 to +40 mV led to an increased conductance by a factor of 7.3 +/- 1.7 (n = 7) and 19.2 +/- 7.6 (n = 6) for NaCl and KCl, respectively, and to a reversal voltage near the presumed equilibrium potential for K+. The results demonstrate that dark cell K+ secretion occurs via K(+)-selective channels with characteristics similar to those associated with the IsK protein.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


1999 ◽  
Vol 276 (6) ◽  
pp. H1827-H1838 ◽  
Author(s):  
Takashi Kawakubo ◽  
Keiji Naruse ◽  
Tatsuaki Matsubara ◽  
Nigishi Hotta ◽  
Masahiro Sokabe

With the use of the patch-clamp technique, five kinds of stretch-activated (SA) ion channels were identified on the basis of their single-channel conductances and ion selectivities in cultured chick ventricular myocytes. Because a high-conductance K+-selective channel predominated among these channels, we concentrated on characterizing its properties mostly using excised inside-out patches. With 145 mM KCl solution in the pipette and the bath, the channel had a conductance of 199.8 ± 8.2 pS ( n = 22). The ion selectivities among K+, Na+, Ca2+, and Cl− as estimated from their permeability ratios were P Na/ P K= 0.03, P Ca/ P K= 0.025, and P Cl/ P K= 0.026. The probability of the channel being open (Po) increased with the Ca2+concentration in the bath ([Ca2+]b; dissociation constant K d = 0.51 μM at +30 mV) and membrane potential (voltage at half-maximal Po= 39.4 mV at 0.35 μM [Ca2+]b). The channel was blocked by gadolinium, tetraethylammonium, and charybdotoxin from the extracellular surface and, consequently, was identified as a Ca2+-activated K+(KCa) channel type. The channel was also reversibly activated by ATP applied to the intracellular surface ( K d = 0.74 mM at 0.10 μM [Ca2+]bat +30 mV). From these data taken together, we concluded that the channel is a new type of KCachannel that could be designated as an “SA KCa,ATP channel.” To our knowledge, this is the first report of KCa channel in heart cells.


1989 ◽  
Vol 142 (1) ◽  
pp. 191-205
Author(s):  
F. ZUFALL ◽  
CH. FRANKE ◽  
H. HATT

Effects of avermectin B1a (AVM) have been tested on excised outside-out or inside-out patches of crayfish stomach muscle membrane. Continuous supervision of AVM (0.1-1 pmoll−1) to the outside-out patches induced openings of channels (22 pS) which were similar in conductance and kinetics to the chloride channels activated by glutamate, quisqualic acid, ibotenic acid and nicotinic agonists, whereas GABA mainly activated a second, larger conductance state (44 pS). This effect was reversible. AVM did not activate the excitatory, glutamate-activated cation channel. Upon raising the AVM-concentration to 10 pmoll−1 and above, an enormous increase in the rate of openings of channels (22 pS) occurred. This effect could not be washed out during the lifetime of the patch. Using inside-out patches, it was shown that the single-channel current amplitude, for both the reversible and irreversible drug actions, strongly depended on intracellular chloride concentration. Applied to the sarcoplasmic side of inside-out patches, AVM did not activate any channel. The distribution of open times for 0.1 pmoll−1 AVM could be fitted by a single exponential (τ=3.3ms). For a higher AVM concentration (1 pmoll−1) two exponentials (τ1 = 0.5ms, τ2 = 2.4ms) were needed to fit the distribution. A similar effect was elicited by decreasing the extracellular Ca2+ concentration from 13.5 to 1 mmoll−1 during the application of 0.1 pmoll−1 AVM. Picrotoxin blocked the activation of chloride channels for both the reversible and irreversible effects of AVM. It is suggested that AVM activates the multitransmitter-gated chloride channel in this preparation. Binding sites for the drug are discussed.


Sign in / Sign up

Export Citation Format

Share Document