Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes

1999 ◽  
Vol 276 (6) ◽  
pp. H1827-H1838 ◽  
Author(s):  
Takashi Kawakubo ◽  
Keiji Naruse ◽  
Tatsuaki Matsubara ◽  
Nigishi Hotta ◽  
Masahiro Sokabe

With the use of the patch-clamp technique, five kinds of stretch-activated (SA) ion channels were identified on the basis of their single-channel conductances and ion selectivities in cultured chick ventricular myocytes. Because a high-conductance K+-selective channel predominated among these channels, we concentrated on characterizing its properties mostly using excised inside-out patches. With 145 mM KCl solution in the pipette and the bath, the channel had a conductance of 199.8 ± 8.2 pS ( n = 22). The ion selectivities among K+, Na+, Ca2+, and Cl− as estimated from their permeability ratios were P Na/ P K= 0.03, P Ca/ P K= 0.025, and P Cl/ P K= 0.026. The probability of the channel being open (Po) increased with the Ca2+concentration in the bath ([Ca2+]b; dissociation constant K d = 0.51 μM at +30 mV) and membrane potential (voltage at half-maximal Po= 39.4 mV at 0.35 μM [Ca2+]b). The channel was blocked by gadolinium, tetraethylammonium, and charybdotoxin from the extracellular surface and, consequently, was identified as a Ca2+-activated K+(KCa) channel type. The channel was also reversibly activated by ATP applied to the intracellular surface ( K d = 0.74 mM at 0.10 μM [Ca2+]bat +30 mV). From these data taken together, we concluded that the channel is a new type of KCachannel that could be designated as an “SA KCa,ATP channel.” To our knowledge, this is the first report of KCa channel in heart cells.

2003 ◽  
Vol 285 (2) ◽  
pp. C480-C488 ◽  
Author(s):  
Yanina A. Assef ◽  
Alicia E. Damiano ◽  
Elsa Zotta ◽  
Cristina Ibarra ◽  
Basilio A. Kotsias

In this study, the expression and functional characterization of CFTR (cystic fibrosis transmembrane regulator) was determined in K562 chronic human leukemia cells. Expression of the CFTR gene product was determined by RT-PCR and confirmed by immunohistochemistry and Western blot analysis. Functional characterization of CFTR Cl- channel activity was conducted with patch-clamp techniques. Forskolin, an adenylyl cyclase activator, induced an anion-selective channel with a linear current-voltage relationship and a single-channel conductance of 11 pS. This cAMP-activated channel had a Pgluconate/PCl or PF/PCl perm-selectivity ratio of 0.35 and 0.30, respectively, and was inhibited by the CFTR blocker glibenclamide and the anti-CFTR antibody MAb 13-1, when added to the cytoplasmatic side of the patch. Glibenclamide decreased the open probability increasing the frequency of open-to-closed transitions. Addition of 200 μM DIDS caused an irreversible block of the channels when added to the cytosolic side of inside-out patches. These and other observations indicate a widespread distribution of CFTR gene expression and suggest that this channel protein may function in most human cells to help maintain cellular homeostasis.


2000 ◽  
Vol 92 (4) ◽  
pp. 1154-1159 ◽  
Author(s):  
Yasuo Tsutsumi ◽  
Shuzo Oshita ◽  
Hiroshi Kitahata ◽  
Yasuhiro Kuroda ◽  
Takashi Kawano ◽  
...  

Background The adenosine triphosphate (ATP)-sensitive potassium (KATP) channels protect myocytes during ischemia and reperfusion. This study investigated the effects of thiamylal on the activities of KATP channels in isolated rat ventricular myocytes during simulated ischemia. Methods Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. Membrane currents were recorded using patch-clamp techniques. In the cell-attached configuration, KATP channel currents were assessed before and during activation of these channels by 2,4-dinitrophenol and after administration of 25, 50, and 100 mg/l thiamylal. The open probability was determined from current-amplitude histograms. In the inside-out configuration, the current-voltage relation was obtained before and after the application of thiamylal (50 mg/1). Results In the cell-attached configuration, 2,4-dinitrophenol caused frequent channel opening. 2,4-Dinitrophenol-induced channel activities were reduced significantly by glibenclamide, suggesting that the channels studied were KATP channels. Open probability of KATP channels was reduced by thiamylal in a concentration-dependent manner. KATP channels could be activated in the inside-out configuration because of the absence of ATP. Thiamylal inhibited KATP channel activity without changing the single-channel conductance. Conclusions The results obtained in this study indicate that thiamylal inhibits KATP channel activities in cell-attached and inside-out patches, suggesting a direct action of this drug on these channels.


1996 ◽  
Vol 108 (5) ◽  
pp. 421-433 ◽  
Author(s):  
J B Sørensen ◽  
E H Larsen

The isolated epithelium of toad skin was disintegrated into single cells by treatment with collagenase and trypsine. Chloride channels of cell-attached and excised inside-out apical membrane-patches of mitochondria-rich cells were studied by the patch-clamp technique. The major population of Cl- channels constituted small 7-pS linear channels in symmetrical solutions (125 mM Cl-). In cell-attached and inside-out patches the single channel i/V-relationship could be described by electrodiffusion of Cl- with a Goldmann-Hodgkin-Katz permeability of, PCl = 1.2 x 10(-14) - 2.6 x 10(-14) cm3. s-1. The channel exhibited voltage-independent activity and could be activated by cAMP. This channel is a likely candidate for mediating the well known cAMP-induced transepithelial Cl- conductance of the amphibian skin epithelium. Another population of Cl- channels exhibited large, highly variable conductances (upper limit conductances, 150-550 pS) and could be activated by membrane depolarization. A group of intermediate-sized Cl(-)-channels included: (a) channels (mean conductance, 30 pS) with linear or slightly outwardly rectifying i/V-relationships and activity occurring in distinct "bursts," (b) channels (conductance-range, 10-27 pS) with marked depolarization-induced activity, and (c) channels with unresolvable kinetics. The variance of current fluctuations of such "noisy" patches exhibited a minimum close to the equilibrium-potential for Cl-. With channels occurring in only 38% of sealed patches and an even lower frequency of voltage-activated channels, the chloride conductance of the apical membrane of mitochondria-rich cells did not match quantitatively that previously estimated from macroscopic Ussing-chamber experiments. From a qualitative point of view, however, we have succeeded in demonstrating the existence of Cl-channels in the apical membrane with features comparable to macroscopic predictions, i.e., activation of channel gating by cAMP and, in a few patches, also by membrane depolarization.


1991 ◽  
Vol 260 (4) ◽  
pp. H1390-H1393 ◽  
Author(s):  
K. B. Walsh ◽  
J. P. Arena ◽  
W. M. Kwok ◽  
L. Freeman ◽  
R. S. Kass

When the patch-clamp technique was used, a slowly activating, time-dependent outward current was identified in both cell-attached and excised membrane patches obtained from guinea pig ventricular myocytes. This macroscopic patch current was present in approximately 50% of patches studied and could be observed both in the presence and absence of unitary single channel activity (i.e., ATP-sensitive K+ channels). The time course of activation of the patch current resembled that of the whole cell delayed-rectifier K+ current (IK) recorded under similar ionic conditions, and the patch current and IK were activated over a similar membrane potential range. The time-dependent patch current could be eliminated when the Nernst potential for K+ equaled that of the pulse voltage. The patch current was inhibited by external addition of the tertiary ammonium compound LY 97241 (50 microM) and was augmented after internal application of the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (500 nM). Deactivating tail currents with kinetics similar to those of IK could be recorded to cell-attached and excised patches. Unitary single channel events underlying the time-dependent patch current could not be resolved despite various attempts to increase single channel conductance. Thus our results suggest that a major component of delayed rectification in guinea pig ventricular cells is due to the activity of a high-density, extremely low conductance K+ channel.


1986 ◽  
Vol 88 (3) ◽  
pp. 369-392 ◽  
Author(s):  
M C Sanguinetti ◽  
D S Krafte ◽  
R S Kass

We have investigated the voltage-dependent effects of the dihydropyridine Bay K8644 on Ca channel currents in calf Purkinje fibers and enzymatically dispersed rat ventricular myocytes. Bay K8644 increases the apparent rate of inactivation of these currents, measured during depolarizing voltage pulses, and shifts both channel activation and inactivation in the hyperpolarizing direction. Consequently, currents measured after hyperpolarizing conditioning pulses are larger in the presence of drug compared with control conditions, but are smaller than control if they are measured after positive conditioning pulses. Most of our experimental observations on macroscopic currents can be explained by a single drug-induced change in one rate constant of a simple kinetic model. The rate constant change is consistent with results obtained by others with single channel recordings.


1994 ◽  
Vol 104 (2) ◽  
pp. 357-373 ◽  
Author(s):  
S Koumi ◽  
R Sato ◽  
T Aramaki

Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.


1995 ◽  
Vol 269 (3) ◽  
pp. C733-C738 ◽  
Author(s):  
L. Vaca ◽  
D. L. Kunze

Although it is clear that D-myo-inositol 1,4,5-trisphosphate (IP3) plays an important role in the activation of Ca2+ influx, the mechanisms by which this occurs remain controversial. In an attempt to determine the role of IP3 in the activation of Ca2+ influx, patch-clamp single-channel experiments in the cell-attached, inside-out, and outside-out configurations were performed on cultured bovine aortic endothelial cells (BAEC). The results presented indicate that both IP3 and intracellular Ca2+ can modulate the activity of a Ca(2+)-selective channel found in the plasma membrane of these cells. Addition of 10 microM IP3 increased channel open probability (P(o)) from a control value of 0.12 +/- 0.05 to 0.7 +/- 0.13 at a constant intracellular Ca2+ of 1 nM in excised inside-out patches. D-Myo-inositol 1,3,4,5-tetrakisphosphate at 50 microM was ineffective in altering channel P(o). Channel activity declined after approximately 2 min in the continuous presence of IP3. Three to four minutes after addition of IP3, channel P(o) was reduced from 0.7 +/- 0.2 to 0.2 +/- 0.1, indicating that an additional regulator might be required to maintain channel activity in excised patches. The channel was reversibly blocked by application of 1 microgram/ml heparin to the intracellular side of inside-out patches. This Ca(2+)-selective channel is indistinguishable from the depletion-activated Ca2+ channel we have previously described in BAEC.


1992 ◽  
Vol 263 (6) ◽  
pp. C1200-C1207 ◽  
Author(s):  
U. Banderali ◽  
G. Roy

Large losses of amino acids by diffusion were previously observed in Madin-Darby canine kidney (MDCK) cells during volume regulation. Also, an outward rectifying anion channel was activated. Because this channel was not selective among anions, it was suggested that it could be permeable to amino acids. Its permeability to aspartate, glutamate, and taurine was studied using the patch-clamp technique in the inside-out configuration. Solutions containing 500 mM aspartate or glutamate were used on the cytoplasmic side of excised patches to detect single-channel currents carried by these anions. Permeability ratios were estimated in two different ways: 1) from the shift in reversal potential of current-voltage curves after anion replacement in the bath solution and 2) from comparisons of amplitudes of single-channel currents carried by tested anions and chloride, respectively. The values of aspartate-to-chloride and glutamate-to-chloride permeability ratios obtained with both methods were quite consistent and were of the order of 0.2 for both amino acids. Taurine in solutions at physiological pH 7.3 is a zwitterionic molecule and bears no net charge. To detect single-channel currents carried by taurine, solutions containing 500 mM taurine at pH 8.2 were used in inside-out experiments. Under these conditions 120 mM of negatively charged taurine was present in the solutions bathing the cytoplasmic side of excised patches. The permeability ratio estimated from the shift in reversal potential was 0.75. These results showed that some of the organic compounds released by cells during regulatory volume decrease could diffuse through this outwardly rectifying anionic channel.


1984 ◽  
Vol 222 (1228) ◽  
pp. 349-355 ◽  

Calcium -activated channels, in the plasm a membrane of rat cultured Schwann cells were studied in isolated ‘inside-out’ membrane patches. With identical (150 mM NaCl) solutions on either side of the membrane, a single channel conductance of 32 pS was calculated for inward current; the conductance was somewhat less for outward current. The channel is about equally permeable to sodium and potassium ions, bu t is not detectably permeable to either chloride or calcium. Under our experimental conditions the channel is activated by high (more than 10 -4 m) concentrations of calcium and is sensitive to voltage, channel activity increasing with membrane depolarization.


1987 ◽  
Vol 127 (1) ◽  
pp. 121-134
Author(s):  
C. J. KERRY ◽  
R. L. RAMSEY ◽  
M. S. P. SANSOM ◽  
P. N. R. USHERWOOD ◽  
H. WASHIO

The effects of (+)-tubocurarine (TC) on single glutamate-activated channels in voltage-clamped locust muscle fibres have been examined using the patch-clamp technique. Glutamate alone produced a concentration-dependent increase in the probability of the channel being in the open state (po), but an increase in the concentration of glutamate (5×10−5-5×10−3 moll−1) in the presence of 5×10−4 moll−1 TC left po essentially unchanged. TC (5×10−6-5×10−4moll−1) caused a concentration- dependent decrease in the mean open time and in po for channels opened by 10−4 moll−4 glutamate. Correlations between successive openings and successive closings, which are characteristic of the kinetics of the muscle glutamate-receptorgated channel of locust muscle, were weakened in the presence of TC. There was little evidence of voltage sensitivity of TC action over the limited membrane potential (Vm) range −70 to −120 mV. The results are consistent with the idea that TC blocks the cation-selective channel gated by glutamate receptors in insect muscle and that the unblocking rate is low. They suggest also that block is at the level of the open channel, a conclusion supported by the wholly activation-induced depression of the neurally evoked twitch contraction of locust muscle by TC. Based upon a simple model for open channel block, TC is estimated to have a dissociation constant of 1.57 μmoll−1 (Vm = −100mV). The rate of association of blocker with channel is estimated to be 8.74×10−3ms−1(moll−1)−1 (Vm=−100mV). The rate of dissociation, estimated indirectly from the single-channel data, is 1.53×10−2ms−1, which gives a mean channel block time of 65.4 ms.


Sign in / Sign up

Export Citation Format

Share Document