scholarly journals VAGAL AND SYMPATHETIC EFFECTS ON THE PACEMAKER FIBERS IN THE SINUS VENOSUS OF THE HEART

1956 ◽  
Vol 39 (5) ◽  
pp. 715-733 ◽  
Author(s):  
Otto F. Hutter ◽  
Wolfgang Trautwein

1. Action potentials from sinus venosus and auricle fibers of spontaneously beating frog hearts have been recorded with intracellular electrodes. 2. Sinus fibers show a slow depolarization, the pacemaker potential, during diastole. The amplitude of this potential varies in different parts of the sinus. In some fibers the membrane potential falls by 11 to 15 mv. during diastole and the transition to the upstroke of the action potential is comparatively gradual. In other regions the depolarization develops more slowly and the action potential takes off more abruptly from a higher membrane potential. It is proposed that the fibers showing the largest fall in membrane potential during diastole are the pacemaker fibers of the heart, and that the rest of the preparation is excited by conduction. In auricle fibers the membrane potential is constant during diastole. 3. The maximum diastolic membrane potential and the overshoot of the action potential vary inversely with the amplitude of the pacemaker potential. The highest values were measured in auricle fibers. 4. Stimulation of vagi suppresses the pacemaker potentials. While the heart is arrested the membrane potential of the sinus fibers rises to a level above the maximum diastolic value reached in previous beats. In 28 experiments vagal stimulation increased the membrane potential from an average maximal diastolic value of 55 mv. to a "resting" level of 65.4 mv. The biggest vagal polarization was 23 mv. 5. In contrast to the sinus fibers vagal inhibition does not change the diastolic membrane potential of frog auricle fibers. 6. Vagal stimulation greatly accelerates the repolarization of the action potential and reduces its amplitude. These changes were seen both in the sinus and in auricle fibers stimulated by direct shocks during vagal arrest. 7. The conduction velocity in the sinus venosus of the tortoise is reduced by vagal stimulation. Block of conduction often occurs. 8. In the frog sinus venosus sympathetic stimulation increases the rate of rise of the pacemaker potential, accelerating the beat. The threshold remains unchanged. The rate of rise of the upstroke and the amplitude of the overshoot are increased. 9. The analogies between the vagal inhibition of the heart and the nervous inhibition of other preparations are discussed.

1988 ◽  
Vol 255 (5) ◽  
pp. H992-H999 ◽  
Author(s):  
R. Mohabir ◽  
G. R. Ferrier

The inducibility of slow-response automaticity was assessed during ischemic conditions and reperfusion by application of extracellular current. Isolated canine Purkinje fibers were depolarized to membrane potentials less than -65 mV to elicit depolarization-induced automaticity (DIA). Ischemic conditions increased the cycle length of DIA and, in some tissues, prevented sustained DIA or completely abolished DIA. The magnitude of depolarization required to elicit DIA also increased. Inhibition of DIA occurred at a time when action potential plateaus were abbreviated. The effect of reperfusion on DIA was biphasic. Initial reappearance of DIA was followed by inhibition and reduction of the membrane potential range over which DIA could be elicited. Plateaus of action potentials initiated at high membrane potential were abbreviated at this time. DIA returned again as reperfusion effects dissipated. Phasic changes in the inducibility of DIA may represent changes in availability of the slow inward current and may regulate the timing and types of arrhythmic activity occurring with ischemia and reperfusion.


1964 ◽  
Vol 47 (4) ◽  
pp. 719-733 ◽  
Author(s):  
W. H. Herzog ◽  
R. M. Feibel ◽  
S. H. Bryant

In the giant axon of Loligo pealii, "aconitine potent" Merck added to the bath (10-7 to 1.25 x 10-6 gm/ml) (a) had no effect on resting membrane potential, membrane resistance and rectification, membrane response to subthreshold currents, critical depolarization, or action potential, but (b) on repetitive stimulation produced oscillations of membrane potential after the spike, depolarization, and decrease of membrane resistance. The effect sums with successive action potentials; it increases with concentration of aconitine, time of exposure, and frequency of stimulation. When the oscillations are large enough and the membrane potential is 51.6 ± SD 1.5 mv a burst of self-sustained activity begins; it usually lasts 20 to 70 sec. and at its end the membrane potential is 41.5 ± SD 1.9 mv. Repolarization occurs with a time constant of 2.5 to 11.1 min. Substitution of choline for external sodium after a burst hyperpolarizes the membrane to -70 mv, and return to normal external sodium depolarizes again beyond the resting membrane potential. The effect of aconitine on the membrane is attributed to an increase of sodium and potassium or chloride conductances following the action potential.


1979 ◽  
Vol 81 (1) ◽  
pp. 93-112
Author(s):  
R. W. Meech

Membrane potential oscillations can be induced in molluscan neurones under a variety of artificial conditions. In the so-called ‘burster’ neurones oscillations are generated even in isolated cells. A likely mechanism for ‘bursting’ involves the following ionic currents: 1. A transient inward current carried by Na+ and Ca2+. This current is responsible for the upstroke of the action potentials. 2. A delayed outward current carried by K+. This current is voltage-sensitive and is responsible for the downstroke of the action potential during the early part of the burst. It becomes progressively inactivated during the burst. Its amplitude depends on the intracellular pH. 3. A rapidly developing outward current carried by K+ which is inactivated at potentials close to action potential threshold. This current tends to hold the membrane in the hyperpolarized state and is involved in spacing the action potentials. 4. A prolonged inward current which may not inactivate. It is probably carried by both Na+ and Ca2+. This current is responsible for the depolarizing phase of the burst but also contributes to the action potential. 5. A slowly developing outward current, carried by K+. This current appears as a result of a slow increase in intracellular ionized calcium and is responsible for the hyperpolarizing phase of the burst. Note that a transient increase in this current may also contribute to the falling phase of the action potential during the later stages of the burst. It is also sensitive to intracellular pH. One of the more significant features of this system of producing membrane potential oscillations is that the frequency of the bursts depends on the rate at which the intracellular ionized calcium returns to its resting level. This process depends on the metabolic state of the animal which can thereby exert a considerable influence on the electrical activity of burster neurones.


1989 ◽  
Vol 61 (4) ◽  
pp. 769-779 ◽  
Author(s):  
N. Uchimura ◽  
H. Higashi ◽  
S. Nishi

1. The membrane properties and synaptic responses of guinea pig nucleus accumbens neurons in vitro were studied with intracellular recording methods. 2. The population of neurons could be divided into groups of low (20-60 M omega, average 46.5 M omega) and high (60-180 M omega, average 96.5 M omega) input resistance. The resting membrane potential in both groups was approximately -70 mV. 3. Other membrane properties were quite similar in both groups. Inward rectification occurred at potentials more negative than -80 mV; this was blocked by Cs+ (2 mM). Membrane potential oscillations were observed at potentials between -65 and -55 mV; these were blocked by tetrodotoxin (TTX, 0.5 microM). Outward rectification occurred at potentials less negative than -45 mV; this was depressed by tetraethylammonium (TEA, 10 mM). 4. Action potentials elicited by small depolarizing current pulses (2-5 ms, 0.3-0.5 nA) were approximately 95 mV in amplitude and 1.0 ms in duration. The afterhyperpolarization following each action potential was less than 30 ms in duration, and no accommodation of action-potential discharge was seen at frequencies up to 40 Hz. The action potentials were reversibly blocked by TTX (0.3 microM). In addition, TTX-insensitive, Ca2+-dependent spikes were evoked by passing larger and more prolonged current pulses (greater than 40 ms, greater than 0.5 nA) across the membrane. 5. Focal electrical stimulation of the slice surface with low intensity (1 ms, less than 10 V) elicited excitatory postsynaptic potentials (EPSPs) in neurons of both high- and low-resistance groups. The reversal potential (+10.2 mV) for the EPSPs was close to the reversal potential (+7.7 mV) of the responses to glutamate applied in the superfusing solution. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid (1 mM) and DL-2-amino-5-phosphonovaleric acid (DL-APV, 250 microM), reversibly depressed the EPSP; the glutamate uptake inhibitor, L-aspartic acid-beta-hydroxamate (50 microM), or removal of Mg2+ from the superfusate, augmented the EPSP. 6. When the intensity of the focal stimulus was increased (1 ms, greater than or equal to 10 V), a second larger depolarizing response (duration, 800 ms to 2 s) could be evoked in addition to the smoothly graded EPSP. This was seen only in cells of the high-resistance group (90-130 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 4 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Vilma Kisnierienė ◽  
Vidmantas Sakalauskas ◽  
Aleksandras Pleskačiauskas ◽  
Vladimir Yurin ◽  
Osvaldas Rukšėnas

AbstractInterrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.


2020 ◽  
Vol 152 (5) ◽  
Author(s):  
Florian Walther ◽  
Dominic Feind ◽  
Christian vom Dahl ◽  
Christoph Emanuel Müller ◽  
Taulant Kukaj ◽  
...  

Voltage-gated sodium (Na+) channels are responsible for the fast upstroke of the action potential of excitable cells. The different α subunits of Na+ channels respond to brief membrane depolarizations above a threshold level by undergoing conformational changes that result in the opening of the pore and a subsequent inward flux of Na+. Physiologically, these initial membrane depolarizations are caused by other ion channels that are activated by a variety of stimuli such as mechanical stretch, temperature changes, and various ligands. In the present study, we developed an optogenetic approach to activate Na+ channels and elicit action potentials in Xenopus laevis oocytes. All recordings were performed by the two-microelectrode technique. We first coupled channelrhodopsin-2 (ChR2), a light-sensitive ion channel of the green alga Chlamydomonas reinhardtii, to the auxiliary β1 subunit of voltage-gated Na+ channels. The resulting fusion construct, β1-ChR2, retained the ability to modulate Na+ channel kinetics and generate photosensitive inward currents. Stimulation of Xenopus oocytes coexpressing the skeletal muscle Na+ channel Nav1.4 and β1-ChR2 with 25-ms lasting blue-light pulses resulted in rapid alterations of the membrane potential strongly resembling typical action potentials of excitable cells. Blocking Nav1.4 with tetrodotoxin prevented the fast upstroke and the reversal of the membrane potential. Coexpression of the voltage-gated K+ channel Kv2.1 facilitated action potential repolarization considerably. Light-induced action potentials were also obtained by coexpressing β1-ChR2 with either the neuronal Na+ channel Nav1.2 or the cardiac-specific isoform Nav1.5. Potential applications of this novel optogenetic tool are discussed.


1991 ◽  
Vol 260 (5) ◽  
pp. H1466-H1473 ◽  
Author(s):  
M. Hay ◽  
V. S. Bishop

The nucleus tractus solitarius (NTS) receives information from both area postrema (AP) and peripheral afferents. It is, therefore, one likely site of interaction between AP and peripheral afferent fibers. The present study's purpose was to determine the influence of AP stimulation on solitary tract-induced modulation of NTS neuronal activity. With the use of an in vitro rabbit brain slice preparation, extracellular recordings were made from 58 NTS neurons in which action potentials were evoked by both solitary tract and AP stimulation. In the majority of the cells tested, simultaneous stimulation of solitary tract and AP, at voltage levels that evoked no action potentials when stimulated separately, resulted in production of either single or multiple action potentials. In 27 units, stimulation levels to the solitary tract and to the AP were adjusted such that their respective separate stimulations produced an NTS action potential less than 30% of the time. When the two inputs were stimulated together, simultaneous stimulations produced an NTS action potential 100% of the time, suggesting a facilitatory interaction between the AP and the solitary tract on NTS neuronal activity. In nine cells, perfusion of the slice with clonidine induced a facilitation of solitary tract-evoked NTS response to a level similar to that seen during simultaneous stimulation of the solitary tract with the AP. Application of the alpha 2-adrenergic receptor antagonist yohimbine blocked the ability of both clonidine and AP to facilitate the solitary tract-evoked response. These results support a possible interaction between AP and peripheral afferents and suggest that AP stimulation facilitates effects of solitary tract activation at the level of the NTS.


1956 ◽  
Vol 187 (1) ◽  
pp. 199-202 ◽  
Author(s):  
Dexter M. Easton

Intracellular action potentials were recorded at the end plate and 1 mm away from it in small bundles of m. adductor longus of Rana pipiens during stimulation of the nerve. The end-plate spike reached a lower maximum and the repolarization was slower when compared with the spikes recorded 1 mm away. The difference was of the form expected from externally recorded impulses, and was much diminished when the number of fibers was reduced to two to three. It is suggested that asynchrony of the activity in adjacent fibers explains the lesser distortion of action potentials distant from the end plate.


1998 ◽  
Vol 79 (5) ◽  
pp. 2358-2364 ◽  
Author(s):  
J. R. Wickens ◽  
C. J. Wilson

Wickens, J. R. and C. J. Wilson. Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J. Neurophysiol. 79: 2358–2364, 1998. Both silent and spontaneously firing spiny projection neurons have been described in the neostriatum, but the reason for their differences in firing activity are unknown. We compared properties of spontaneously firing and silent spiny neurons in urethan-anesthetized rats. Neurons were identified as spiny projection neurons after labeling by intracellular injection of biocytin. The threshold for action-potential firing was measured under three different conditions: 1) electrical stimulation of the contralateral cerebral cortex, 2) brief directly applied current pulses, and 3) spontaneous action-potentials occurring during spontaneous episodes of depolarization (up state). The average membrane potential and the amplitude of noiselike fluctuations of membrane potential in the up state were determined by fitting a Gaussian curve to the membrane-potential distribution. All neurons in the sample exhibited spontaneous membrane potential shifts between a hyperpolarized down state and a depolarized up state, but not all fired action potentials while in the up state. The difference between the spontaneously firing and the silent spiny neurons was in the average membrane potential in the up state, which was significantly more depolarized in the spontaneously firing than in the silent spiny neurons. There were no significant differences in the threshold, the amplitude of the noiselike fluctuations of membrane potential in the up state, or in the proportion of time that the membrane potential was in the up state. In both spontaneously firing and silent neurons, the threshold for action potentials evoked by current pulses was significantly higher than for those evoked by cortical stimulation. Application of more intense current pulses that reproduced the excitatory postsynaptic potential rate of rise produced firing at correspondingly lower thresholds. Because the membrane potential in the up state is mainly determined by the balance between the synaptic drive and the outward potassium conductances activated in the subthreshold range of membrane potentials, either or both of these factors may determine whether firing occurs in response to spontaneous afferent activity.


1999 ◽  
Vol 276 (6) ◽  
pp. S62
Author(s):  
M Stewart

The physiology of excitable membranes is a fundamental topic in neuroscience and physiology courses at graduate and undergraduate levels. From the building blocks of ionic gradients and membrane channels whose permeability is selective and variable, we build the concepts of resting potential, action potential, and propagation in neurons and muscle fibers. Many students have an intuitive understanding of the movements of ions and the associated changes in membrane potential. For example, potassium ions leaving a cell through potassium-selective channels become unbalanced positive charges on the outside of the cell (and leave unbalanced negative charges on the inside), thus producing a potential across the membrane with the inside negative with respect to the outside. Later, when we discuss the local circuit currents that underlie propagation or the basis for extracellular stimulation, we make the general statement that "outward currents depolarize cells." Students respond with utter disbelief. Two simple additions to a discussion of membranes are suggested that permit the formulation of a consistent set of rules that apply to everything from the resting and action potentials of nerve and muscle through synaptic potentials and stimulation techniques.


Sign in / Sign up

Export Citation Format

Share Document