The combined effect of Cd2+ and ACh on action potentials of Nitellopsis obtusa cells

2009 ◽  
Vol 4 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Vilma Kisnierienė ◽  
Vidmantas Sakalauskas ◽  
Aleksandras Pleskačiauskas ◽  
Vladimir Yurin ◽  
Osvaldas Rukšėnas

AbstractInterrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.

1998 ◽  
Vol 79 (5) ◽  
pp. 2358-2364 ◽  
Author(s):  
J. R. Wickens ◽  
C. J. Wilson

Wickens, J. R. and C. J. Wilson. Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J. Neurophysiol. 79: 2358–2364, 1998. Both silent and spontaneously firing spiny projection neurons have been described in the neostriatum, but the reason for their differences in firing activity are unknown. We compared properties of spontaneously firing and silent spiny neurons in urethan-anesthetized rats. Neurons were identified as spiny projection neurons after labeling by intracellular injection of biocytin. The threshold for action-potential firing was measured under three different conditions: 1) electrical stimulation of the contralateral cerebral cortex, 2) brief directly applied current pulses, and 3) spontaneous action-potentials occurring during spontaneous episodes of depolarization (up state). The average membrane potential and the amplitude of noiselike fluctuations of membrane potential in the up state were determined by fitting a Gaussian curve to the membrane-potential distribution. All neurons in the sample exhibited spontaneous membrane potential shifts between a hyperpolarized down state and a depolarized up state, but not all fired action potentials while in the up state. The difference between the spontaneously firing and the silent spiny neurons was in the average membrane potential in the up state, which was significantly more depolarized in the spontaneously firing than in the silent spiny neurons. There were no significant differences in the threshold, the amplitude of the noiselike fluctuations of membrane potential in the up state, or in the proportion of time that the membrane potential was in the up state. In both spontaneously firing and silent neurons, the threshold for action potentials evoked by current pulses was significantly higher than for those evoked by cortical stimulation. Application of more intense current pulses that reproduced the excitatory postsynaptic potential rate of rise produced firing at correspondingly lower thresholds. Because the membrane potential in the up state is mainly determined by the balance between the synaptic drive and the outward potassium conductances activated in the subthreshold range of membrane potentials, either or both of these factors may determine whether firing occurs in response to spontaneous afferent activity.


2007 ◽  
Vol 292 (1) ◽  
pp. R388-R395 ◽  
Author(s):  
Cristina E. Molina ◽  
Hans Gesser ◽  
Anna Llach ◽  
Lluis Tort ◽  
Leif Hove-Madsen

Application of the current-clamp technique in rainbow trout atrial myocytes has yielded resting membrane potentials that are incompatible with normal atrial function. To investigate this paradox, we recorded the whole membrane current ( Im) and compared membrane potentials recorded in isolated cardiac myocytes and multicellular preparations. Atrial tissue and ventricular myocytes had stable resting potentials of −87 ± 2 mV and −83.9 ± 0.4 mV, respectively. In contrast, 50 out of 59 atrial myocytes had unstable depolarized membrane potentials that were sensitive to the holding current. We hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at −120 mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from −78 ± 3 to −84 ± 3 mV, and stabilized the resting membrane potential at −92 ± 4 mV. ACh also shortened the action potential in both atrial myocytes and tissue, and this effect was antagonized by atropine. When applied alone, atropine prolonged the action potential in atrial tissue but had no effect on membrane potential, action potential, or Im in isolated atrial myocytes. This suggests that ACh-mediated activation of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential.


1988 ◽  
Vol 255 (5) ◽  
pp. H992-H999 ◽  
Author(s):  
R. Mohabir ◽  
G. R. Ferrier

The inducibility of slow-response automaticity was assessed during ischemic conditions and reperfusion by application of extracellular current. Isolated canine Purkinje fibers were depolarized to membrane potentials less than -65 mV to elicit depolarization-induced automaticity (DIA). Ischemic conditions increased the cycle length of DIA and, in some tissues, prevented sustained DIA or completely abolished DIA. The magnitude of depolarization required to elicit DIA also increased. Inhibition of DIA occurred at a time when action potential plateaus were abbreviated. The effect of reperfusion on DIA was biphasic. Initial reappearance of DIA was followed by inhibition and reduction of the membrane potential range over which DIA could be elicited. Plateaus of action potentials initiated at high membrane potential were abbreviated at this time. DIA returned again as reperfusion effects dissipated. Phasic changes in the inducibility of DIA may represent changes in availability of the slow inward current and may regulate the timing and types of arrhythmic activity occurring with ischemia and reperfusion.


1997 ◽  
Vol 77 (4) ◽  
pp. 1697-1715 ◽  
Author(s):  
Edward A. Stern ◽  
Anthony E. Kincaid ◽  
Charles J. Wilson

Stern, Edward A., Anthony E. Kincaid, and Charles J. Wilson. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77: 1697–1715, 1997. We measured the timing of spontaneous membrane potential fluctuations and action potentials of medial and lateral agranular corticostriatal and striatal neurons with the use of in vivo intracellular recordings in urethan-anesthetized rats. All neurons showed spontaneous subthreshold membrane potential shifts from 7 to 32 mV in amplitude, fluctuating between a hyperpolarized down state and depolarized up state. Action potentials arose only during the up state. The membrane potential state transitions showed a weak periodicity with a peak frequency near 1 Hz. The peak of the frequency spectra was broad in all neurons, indicating that the membrane potential fluctuations were not dominated by a single periodic function. At frequencies >1 Hz, the log of magnitude decreased linearly with the log of frequency in all neurons. No serial dependence was found for up and down state durations, or for the time between successive up or down state transitions, showing that the up and down state transitions are not due to superimposition of noisy inputs onto a single frequency. Monte Carlo simulations of stochastic synaptic inputs to a uniform finite cylinder showed that the Fourier spectra obtained for corticostriatal and striatal neurons are inconsistent with a Poisson-like synaptic input, demonstrating that the up state is not due to an increase in the strength of an unpatterned synaptic input. Frequency components arising from state transitions were separated from those arising from the smaller membrane potential fluctuations within each state. A larger proportion of the total signal was represented by the fluctuations within states, especially in the up state, than was predicted by the simulations. The individual state spectra did not correspond to those of random synaptic inputs, but reproduced the spectra of the up and down state transitions. This suggests that the process causing the state transitions and the process responsible for synaptic input may be the same. A high-frequency periodic component in the up states was found in the majority of the corticostriatal cells in the sample. The average size of the component was not different between neurons injected with QX-314 and control neurons. The high-frequency component was not seen in any of our sample of striatal cells. Corticostriatal and striatal neurons' coefficients of variation of interspike intervals ranged from 1.0 to 1.9. When interspike intervals including a down state were subtracted from the calculation, the coefficient of variation ranged from 0.4 to 1.1, indicating that a substantial proportion of spike interval variance was due to the subthreshold membrane potential fluctuations.


1964 ◽  
Vol 47 (4) ◽  
pp. 719-733 ◽  
Author(s):  
W. H. Herzog ◽  
R. M. Feibel ◽  
S. H. Bryant

In the giant axon of Loligo pealii, "aconitine potent" Merck added to the bath (10-7 to 1.25 x 10-6 gm/ml) (a) had no effect on resting membrane potential, membrane resistance and rectification, membrane response to subthreshold currents, critical depolarization, or action potential, but (b) on repetitive stimulation produced oscillations of membrane potential after the spike, depolarization, and decrease of membrane resistance. The effect sums with successive action potentials; it increases with concentration of aconitine, time of exposure, and frequency of stimulation. When the oscillations are large enough and the membrane potential is 51.6 ± SD 1.5 mv a burst of self-sustained activity begins; it usually lasts 20 to 70 sec. and at its end the membrane potential is 41.5 ± SD 1.9 mv. Repolarization occurs with a time constant of 2.5 to 11.1 min. Substitution of choline for external sodium after a burst hyperpolarizes the membrane to -70 mv, and return to normal external sodium depolarizes again beyond the resting membrane potential. The effect of aconitine on the membrane is attributed to an increase of sodium and potassium or chloride conductances following the action potential.


1985 ◽  
Vol 63 (11) ◽  
pp. 1474-1476 ◽  
Author(s):  
E. G. Hunter ◽  
J. Elbrink

The cellular electrical activity of diaphragm from F1B normal and BIO 14.6 dystrophic hamsters has been investigated using microelectrodes. Resting membrane potentials and action potentials were recorded from control muscles and from muscles exposed to 2,4-dinitrophenol. The action potentials of normal and dystrophic diaphragms were similar in amplitude and configuration. Treatment with 2,4-dinitrophenol caused the action potential amplitude of both diaphragms to decline by similar amounts. The control resting membrane potential of diaphragm from dystrophic hamsters is not significantly different from that of normal hamsters. Treatment with 2,4-dinitrophenol caused a linear decrease in the resting membrane potentials of both groups of muscles. Dystrophic muscle, however, showed a more rapid decline in excitability when exposed to 2,4-dinitrophenol. This suggests that adenosine triphosphate production in dystrophic muscle is partially inhibited as has been suggested by other workers.


2007 ◽  
Vol 97 (1) ◽  
pp. 746-760 ◽  
Author(s):  
Yousheng Shu ◽  
Alvaro Duque ◽  
Yuguo Yu ◽  
Bilal Haider ◽  
David A. McCormick

Cortical pyramidal cells are constantly bombarded by synaptic activity, much of which arises from other cortical neurons, both in normal conditions and during epileptic seizures. The action potentials generated by barrages of synaptic activity may exhibit a variable site of origin. Here we performed simultaneous whole cell recordings from the soma and axon or soma and apical dendrite of layer 5 pyramidal neurons during normal recurrent network activity (up states), the intrasomatic or intradendritic injection of artificial synaptic barrages, and during epileptiform discharges in vitro. We demonstrate that under all of these conditions, the real or artificial synaptic bombardments propagate through the dendrosomatic-axonal arbor and consistently initiate action potentials in the axon initial segment that then propagate to other parts of the cell. Action potentials recorded intracellularly in vivo during up states and in response to visual stimulation exhibit properties indicating that they are typically initiated in the axon. Intracortical axons were particularly well suited to faithfully follow the generation of action potentials by the axon initial segment. Action-potential generation was more reliable in the distal axon than at the soma during epileptiform activity. These results indicate that the axon is the preferred site of action-potential initiation in cortical pyramidal cells, both in vivo and in vitro, with state-dependent back propagation through the somatic and dendritic compartments.


2018 ◽  
Author(s):  
Maria Teleńczuk ◽  
Romain Brette ◽  
Alain Destexhe ◽  
Bartosz Teleńczuk

AbstractAction potentials (APs) are electric phenomena that are recorded both intracellularly and extracellularly. APs are usually initiated in the short segment of the axon called the axon initial segment (AIS). It was recently proposed that at onset of an AP the soma and the AIS form a dipole. We study the extracellular signature (the extracellular action potential, EAP) generated by such a dipole. First, we demonstrate the formation of the dipole and its extracellular signature in detailed morphological models of a reconstructed pyramidal neuron. Then, we study the EAP waveform and its spatial dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with somatic AP initiation. We show that in the models with axonal AP initiation the dipole forms between somatodendritic compartments and the AIS, and not between soma and dendrites as in the classical models. Soma-dendrites dipole is present only in models with somatic AP initiation. Our study has consequences for interpreting extracellular recordings of single-neuron activity and determining electrophysiological neuron types, but also for better understanding the origins of the high-frequency macroscopic electric fields recorded in the brain.New & NoteworthyWe studied the consequences of the action potential (AP) initiation site on the extracellular signatures of APs. We show that: (1) at the time of AP initiation the action initial segment (AIS) forms a dipole with the soma, (2) the width but not (3) amplitude of the extracellular AP generated by this dipole increases with the soma-AIS distance. This may help to monitor dynamic changes in the AIS position in experimental in vivo recordings.


1985 ◽  
Vol 249 (1) ◽  
pp. C78-C83 ◽  
Author(s):  
H. J. Bryant ◽  
D. R. Harder ◽  
M. B. Pamnani ◽  
F. J. Haddy

Membrane potentials measured in vivo may differ significantly from those measured in vitro in part due to humoral factors, innervation, and wall tension. These studies were initiated to determine whether it is feasible to record membrane potentials from vascular smooth muscle cells in vivo in the caudal artery of the pentobarbital-anesthetized male Wistar rat. Membrane potentials were measured using glass microelectrodes and correlated with systolic, diastolic, and mean blood pressures. For systolic blood pressures between 100 and 140 mmHg the average resting membrane potential was -38.4 +/- 0.48 mV. There was good correlation of systolic, diastolic, and mean blood pressures with membrane potential between 100 and 140 mmHg (r = 0.89, 0.75, and 0.89, respectively). Below 80 mmHg the arterial muscle cells became more depolarized than would be expected if the membrane potential were determined solely by transmural pressure. The depolarized membrane potential at low arterial pressures may be due to enhanced neural input. Spontaneous electrical activity was observed in some of the in vivo cells. When action potentials were present, they were generated at rates between 1-2/s and 6-7/min. These studies indicate that it is feasible to measure membrane potentials from arterial smooth muscle cells in vivo in the caudal artery of the rat.


1976 ◽  
Vol 39 (6) ◽  
pp. 1220-1235 ◽  
Author(s):  
R. H. Masland ◽  
A. Ames

1. Rabbit retinas were isolated and superfused with a physiological medium. Ganglion cell activity was recorded during stimulation with focused light, and receptive fields were mapped. Receptive fields were identical to those found in vivo and did not change during a 6-h incubation. After the receptive field of a ganglion cell had been identified, acetylcholine or related agents were introduced singly or in combination into the medium, and their effect on the cell's spontaneous and light-evoked activity was observed. 2. Ganglion cells with on-center or directionally selective receptive fields were excited when ACh was added to the medium. The response to exogenous ACh was prevented by cholinergic antagonists. 3. These cells' spontaneous activity and response to light were enhanced by anticholinesterase and depressed by cholinergic antagonists. Antagonists varied in their ability to block the light-evoked response, with dihydro-beta-erythroidine the most effective. 4. Thresholds for ACh or the related agents were low, ranging from 1 to 40 muM; their effects were rapidly and completely reversed when the retina was returned to control medium. 5. In retinas incubated in medium containing 20 mM Mg2+ and 0.2 mM Ca2+, ganglion cells lost completely both their spontaneous and light-evoked activity, but retained their ability to generate action potentials in response to elevated K+. Ganglion cell activity rapidly returned to normal when the retina was returned to medium containing normal electrolytes. On-center and directionally selective cells were excited by ACh in retinas where synaptic transmission had been inhibited by 20 mM Mg2+ and 0.2 mM Ca2+. 6. The responses of on-center and directionally selective cells to ACh, to anticholinesterase, and to cholinergic antagonists in control medium indicate that the retina contains one or more synapses using ACh as a neurotransmitter. The response to ACh in retinas exposed to 20 mM Mg2+ and 0.2 mM Ca2+ suggests that at least one such synapse in on the ganglion cell itself. 7. Off-center cells were inhomogenous in their response to ACh. Although some responded just as the other classes of cell, the majority responded quite weakly and a subgroup was encountered which was entirely unaffected by even 1 mM ACh, by levels of physostigmine which inactivate virtually all retinal acetyl-cholinesterase, or by high concentrations of cholinergic antagonists. Only 2 of 20 off-cells tested in the presence of 20 mM Mg2+ and 0.2 mM Ca2+ were excited by ACh. Apparently ACh is not a primary transmitter for most off-cells.


Sign in / Sign up

Export Citation Format

Share Document