peripheral afferents
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Lizhen Chen ◽  
Xiaoyu Wang ◽  
Xiaoning Zhang ◽  
Hongye Wan ◽  
Yangshuai Su ◽  
...  

Recent studies have shown that both superficial and deep acupuncture produced clinically relevant and persistent effect on chronic pain, and several subtypes of somatic primary afferents played critical roles in acupuncture and moxibustion analgesia. However, which kind of primary afferents in the superficial and deep tissue of the acupoint is activated by acupuncture or moxibustion to relieve pain persistently remains unclear. The aim of this study is to investigate the roles of distinct peripheral afferents in different layers of the tissue (muscle or skin) in the acupoint for pain relief. Muscular A-fibers activated by deep electroacupuncture (dEA) with lower intensity (approximately 1 mA) persistently alleviated inflammatory muscle pain. Meanwhile, cutaneous C-nociceptors excited by noxious moxibustion-like stimulation (MS) and topical application of capsaicin (CAP) on local acupoint area produced durable analgesic effect. Additionally, spontaneous activity of C-fibers caused by muscular inflammation was also inhibited by dEA and CAP. Furthermore, decreases in pain behavior induced by dEA disappeared after deep A-fibers were demyelinated by cobra venom, whereas CAP failed to relieve pain following cutaneous denervation. Collectively, these results indicate that dEA and MS ameliorate inflammatory muscle pain through distinct primary afferents in different layers of somatic tissue; the former is achieved by activating muscular A-fibers, while the latter is mediated by activating cutaneous C-fibers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246298
Author(s):  
Jaclyn T. Eisdorfer ◽  
Michael A. Phelan ◽  
Kathleen M. Keefe ◽  
Morgan M. Rollins ◽  
Thomas J. Campion ◽  
...  

One method for the evaluation of sensorimotor therapeutic interventions, the horizontal ladder walking task, analyzes locomotor changes that may occur after disease, injury, or by external manipulation. Although this task is well suited for detection of large effects, it may overlook smaller changes. The inability to detect small effect sizes may be due to a neural compensatory mechanism known as “cross limb transfer”, or the contribution of the contralateral limb to estimate an injured or perturbed limb’s position. The robust transfer of compensation from the contralateral limb may obscure subtle locomotor outcomes that are evoked by clinically relevant therapies, in the early onset of disease, or between higher levels of recovery. Here, we propose angled rungs as a novel modification to the horizontal ladder walking task. Easily-adjustable angled rungs force rats to locomote across a different locomotion path for each hindlimb and may therefore make information from the contralateral limb less useful. Using hM3Dq (excitatory) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in large diameter peripheral afferents of the hindlimb in the intact animal, we characterized the sensitivity of our design to detect stepping differences by comparing locomotor changes observed on angled rungs to those observed on a standard horizontal ladder. On our novel asymmetrical ladder, activation of DREADDs resulted in significant differences in rung misses (p = 0.000011) and weight-supporting events (p = 0.049). By comparison, on a standard ladder, we did not observe differences in these parameters (p = 0.86 and p = 0.98, respectively). Additionally, no locomotor differences were detected in baseline and inactivated DREADDs trials when we compared ladder types, suggesting that the angled rungs do not change animal gait behavior unless intervention or injury is introduced. Significant changes observed with angled rungs may demonstrate more sensitive probing of locomotor changes due to the decoupling of cross limb transfer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Justina Motiejunaite ◽  
Pauline Balagny ◽  
Florence Arnoult ◽  
Laurence Mangin ◽  
Catherine Bancal ◽  
...  

Since the outbreak of the coronavirus (COVID-19) pandemic, most attention has focused on containing transmission and addressing the surge of critically ill patients in acute care settings. As we enter the second phase of the pandemic, emphasis must evolve to post-acute care of COVID-19 survivors. Persisting cardiorespiratory symptoms have been reported at several months after the onset of the infection. Information is lacking on the pathophysiology of exercise intolerance after COVID-19. Previous outbreaks of coronaviruses have been associated with persistent dyspnea, muscle weakness, fatigue and reduced quality of life. The extent of Covid-19 sequelae remains to be evaluated, but persisting cardiorespiratory symptoms in COVID-19 survivors can be described as two distinct entities. The first type of post-Covid symptoms are directly related to organ injury in the acute phase, or the complications of treatment. The second type of persisting symptoms can affect patients even with mild initial disease presentation without evidence of organ damage. The mechanisms are still poorly qualified to date. There is a lack of correlation between initial symptom severity and residual symptoms at exertion. We report exercise hyperventilation as a major limiting factor in COVID-19 survivors. The origin of this hyperventilation may be related to an abnormality of ventilatory control, by either hyperactivity of activator systems (automatic and cortical ventilatory control, peripheral afferents, and sensory cortex) or failure of inhibitory systems (endorphins) in the aftermath of pulmonary infection. Hyperventilation-induced hypocapnia can cause a multitude of extremely disabling symptoms such as dyspnea, tachycardia, chest pain, fatigue, dizziness and syncope at exertion.


Neurology ◽  
2020 ◽  
Vol 95 (19) ◽  
pp. e2697-e2706 ◽  
Author(s):  
Yi-Ling Chien ◽  
Chi-Chao Chao ◽  
Shao-Wei Wu ◽  
Hsueh-Wen Hsueh ◽  
Yen-Nan Chiu ◽  
...  

ObjectiveTo investigate small fiber innervation of the skin and its relationships with clinicometry of autism and peripheral afferents for contact heat-evoked potential (CHEP) and psychophysical measures of thermal thresholds.MethodsWe recruited 32 men with autism (26.5 ± 5.9 years) and conducted small fiber assessments of skin biopsy with quantifying intraepidermal nerve fiber (IENF) density, CHEP, quantitative sensory testing, and large fiber physiology of nerve conduction studies. Results were compared with age-matched controls and analyzed with clinical measures of autism.ResultsPatients with autism showed a lower IENF density than controls (5.53 ± 2.09 vs 11.13 ± 3.49 fibers/mm, p < 0.0001). The IENF density was reduced in 17 (53.1%) men with autism classified as skin denervation group. On psychophysics, 9 (28%) men with autism had elevated thermal thresholds, and the warm threshold of the big toe was negatively correlated with IENF density (p = 0.0073), indicating functional impairments of small fiber sensory nerves. IENF density was negatively correlated with CHEP amplitude in autism (p = 0.003), in contrast to the pattern of positive correlation in controls, indicating different processing of nociceptive afferent in autism. Clinically, IENF density was related to distinct tactile symptom patterns in the skin denervation vs normal innervation group, respectively. Furthermore, IENF density was associated with autistic symptoms measured by the Autism Spectrum Quotient in a U-shaped model (p = 0.014).ConclusionsThese observations indicated that a substantial portion of individuals with autism had small fiber pathology, which was associated with tactile and autistic symptoms, providing structural and physiologic evidence for the involvement of peripheral sensory nerves in autism.


Pain ◽  
2019 ◽  
Vol 160 (7) ◽  
pp. 1487-1488 ◽  
Author(s):  
Stephen G. Waxman

2017 ◽  
Author(s):  
David Schoppik ◽  
Isaac H. Bianco ◽  
David A. Prober ◽  
Adam D. Douglass ◽  
Drew N. Robson ◽  
...  

Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations — such as asymmetric connectivity — to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically-defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concor-dantly, when the entire population of asymmetrically-projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically-projecting central population thus participates in both up and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially-projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze-stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically-relevant stimuli without compromising reflexive behavior.Significance StatementInterneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically-defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael G Metzen ◽  
Maurice J Chacron

Previously we reported that correlations between the activities of peripheral afferents mediate a phase invariant representation of natural communication stimuli that is refined across successive processing stages thereby leading to perception and behavior in the weakly electric fish Apteronotus leptorhynchus (Metzen et al., 2016). Here, we explore how phase invariant coding and perception of natural communication stimuli are affected by changes in the sinusoidal background over which they occur. We found that increasing background frequency led to phase locking, which decreased both detectability and phase invariant coding. Correlated afferent activity was a much better predictor of behavior as assessed from both invariance and detectability than single neuron activity. Thus, our results provide not only further evidence that correlated activity likely determines perception of natural communication signals, but also a novel explanation as to why these preferentially occur on top of low frequency as well as low-intensity sinusoidal backgrounds.


Sign in / Sign up

Export Citation Format

Share Document