scholarly journals Non-Linear Current-Potential Relations in an Axon Membrane

1961 ◽  
Vol 44 (6) ◽  
pp. 1055-1057 ◽  
Author(s):  
Kenneth S. Cole

The membrane current density, Im, in the squid giant axon has been calculated from the measured external current applied to the axon, Io, by the equation See PDF for Equation where Vm is the membrane potential under the current electrode and r1 and r2 are the external and internal longitudinal resistances. The original derivation of this equation included in one step an assumption of a linear relation between Im and Vm. It is shown that the same equation can be obtained without this restricting assumption.

1941 ◽  
Vol 25 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Kenneth S. Cole

Previous measurements have shown that the electrical properties of the squid axon membrane are approximately equivalent to those of a circuit containing a capacity shunted by an inductance and a rectifier in series. Selective ion permeability of a membrane separating two electrolytes may be expected to give rise to the rectification. A quasi-crystalline piezoelectric structure of the membrane is a plausible explanation of the inductance. Some approximate calculations of behavior of an axon with these membrane characteristics have been made. Fair agreement is obtained with the observed constant current subthreshold potential and impedance during the foot of the action potential. In a simple case a formal analogy is found between the calculated membrane potential and the excitability defined by the two factor formulations of excitation. Several excitation phenomena may then be explained semi-quantitatively by further assuming the excitability proportional to the membrane potential. Some previous measurements and subthreshold potential and excitability observations are not consistent with the circuit considered and indicate that this circuit is only approximately equivalent to the membrane.


1960 ◽  
Vol 43 (5) ◽  
pp. 971-980 ◽  
Author(s):  
Kenneth S. Cole ◽  
John W. Moore

The potential differences across the squid giant axon membrane, as measured with a series of microcapillary electrodes filled with concentrations of KCl from 0.03 to 3.0 M or sea water, are consistent with a constant membrane potential and the liquid junction potentials calculated by the Henderson equation. The best value for the mobility of an organic univalent ion, such as isethionate, leads to a probably low, but not impossible, axoplasm specific resistance of 1.2 times sea water and to a liquid junction correction of 4 mv. for microelectrodes filled with 3 M KCl. The errors caused by the assumptions of proportional mixing, unity activity coefficients, and a negligible internal fixed charge cannot be estimated but the results suggest that the cumulative effect of them may not be serious.


1960 ◽  
Vol 44 (1) ◽  
pp. 123-167 ◽  
Author(s):  
Kenneth S. Cole ◽  
John W. Moore

The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.2, the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them.


1962 ◽  
Vol 46 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Rita Guttman ◽  

The effect of temperature on the potential and current thresholds of the squid giant axon membrane was measured with gross external electrodes. A central segment of the axon, 0.8 mm long and in sea water, was isolated by flowing low conductance, isoosmotic sucrose solution on each side; both ends were depolarized in isoosmotic KCl. Measured biphasic square wave currents at five cycles per second were applied between one end of the nerve and the membrane of the central segment. The membrane potential was recorded between the central sea water and the other depolarized end. The recorded potentials are developed only across the membrane impedance. Threshold current values ranged from 3.2 µa at 267deg;C to 1 µa at 7.5°C. Threshold potential values ranged from 50 mv at 26°C to 6 mv at 7.5°C. The mean Q10 of threshold current was 2.3 (SD = 0.2), while the Q10 for threshold potentials was 2.0 (SD = 0.1).


1976 ◽  
Vol 67 (3) ◽  
pp. 369-380 ◽  
Author(s):  
J Villegas ◽  
C Sevcik ◽  
F V Barnola ◽  
R Villegas

The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of grayanotoxin I and veratrine on the membrane potential of the Schwann cell were found to be similar to those they produce on the resting membrane potential of the giant axon. Thus, grayanotoxin I (1-30 muM) and veratrine (5-50 mug-jl-1), externally applied to the intact nerve fiber or to axon-free nerve fiber sheaths, produce a Schwann cell depolarization which can be reversed by decreasing the external sodium concentration or by external application of tetrodotoxin. The magnitude of these membrane potential changes is related to the concentrations of the drugs in the external medium. These results indicate the existence of sodium pathways in the electrically unexcitable Schwann cell membrane of S. sepioidea, which can be opened up by grayanotoxin I and veratrine, and afterwards are blocked by tetrodotoxin. The sodium pathways of the Schwann cell membrane appear to be different from those of the axolemma which show a voltage-dependent conductance.


1976 ◽  
Vol 68 (4) ◽  
pp. 405-420 ◽  
Author(s):  
B G Kennedy ◽  
P De Weer

Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels.


1957 ◽  
Vol 40 (6) ◽  
pp. 859-885 ◽  
Author(s):  
Ichiji Tasaki ◽  
Susumu Hagiwara

1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is practically normal (Fig. 4). Near the end of the action potential, there is an apparent increase in the membrane resistance (Fig. 5D and Fig. 6, right). 3. The phenomenon of abolition of action potentials was demonstrated in the squid giant axon treated with TEA (Fig. 7). Following an action potential abolished in its early phase, there is no refractoriness (Fig. 8). 4. By the method of voltage clamp, the voltage-current relation was investigated on normal squid axons as well as on axons treated with TEA (Figs. 9 and 10). 5. The presence of stable states of the membrane was demonstrated by clamping the membrane potential with two voltage steps (Fig. 11). Experimental evidence was presented showing that, in an "unstable" state, the membrane conductance is not uniquely determined by the membrane potential. 6. The effect of low sodium water was investigated in the axon treated with TEA (Fig. 12). 7. The similarity between the action potential of a squid axon under TEA and that of the vertebrate cardiac muscle was stressed. The experimental results were interpreted as supporting the view that there are two stable states in the membrane. Initiation and abolition of an action potential were explained as transitions between the two states.


Sign in / Sign up

Export Citation Format

Share Document