scholarly journals Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram.

1984 ◽  
Vol 83 (2) ◽  
pp. 213-232 ◽  
Author(s):  
R A Linsenmeier ◽  
R H Steinberg

Previous work has shown that the cat retinal pigment epithelium (RPE) is the source of two potential changes that follow the absorption of light by photoreceptors: a hyperpolarization of the apical membrane, peaking in 2-4 s, which leads to the RPE component of the electroretinogram (ERG) c-wave, and a depolarization of the basal membrane, peaking in 5 min, which leads to the light peak. This paper describes a new basal membrane response of intermediate time course, called the delayed basal hyperpolarization. Isolation of this response from other RPE potentials showed that with maintained illumination the hyperpolarization begins approximately 2 s after light onset, peaks in 20 s, and slowly ends as the membrane repolarizes over the next 60 s. The delayed basal hyperpolarization is very small for stimuli less than 4 s in duration and grows with duration, becoming approximately 15% as large as the preceding apical hyperpolarization with stimuli longer than 20 s. Extracellularly, this response contributes to the transepithelial potential (TEP) across the RPE. In response to light the TEP first rises to a peak, the c-wave, as the apical membrane hyperpolarizes. For stimuli longer than approximately 4 s, the decline of the TEP from the peak of the c-wave results partly from the recovery of apical membrane potential and partly from the delayed basal hyperpolarization. For long periods of illumination (300 s) the delayed basal hyperpolarization leads to a trough in the TEP between the c-wave and light peak. This trough is largely responsible for a corresponding trough in vitreal recordings, which has been called the "fast oscillation." The term "fast oscillation" has also been used to denote the sequence of potential changes resulting from repeated stimuli approximately 1 min in duration. In addition to the delayed basal hyperpolarization, such responses also contain a basal off-response, a delayed depolarization.

1984 ◽  
Vol 83 (2) ◽  
pp. 193-211 ◽  
Author(s):  
E R Griff ◽  
R H Steinberg

We describe here a new retinal pigment epithelium (RPE) response, a delayed hyperpolarization of the RPE basal membrane, which is initiated by the light-evoked decrease of [K+]o in the subretinal space. This occurs in addition to an apical hyperpolarization previously described in cat (Steinberg et al., 1970; Schmidt and Steinberg, 1971) and in bullfrog (Oakley et al., 1977; Oakley, 1977). Intracellular and extracellular potentials and measurements of subretinal [K+]o were recorded from an in vitro preparation of neural retina-RPE-choroid from the lizard Gekko gekko in response to light. Extracellularly, the potential across the RPE, the transepithelial potential (TEP), first increased and then decreased during illumination. Whereas the light-evoked decrease in [K+]o predicted the increase in TEP, the subsequent decrease in TEP was greater than predicted by the reaccumulation of [K+]o. Intracellular RPE recordings showed that a delayed hyperpolarization generated at the RPE basal membrane produced the extra TEP decrease. At light offset, the opposite sequence of membrane potential changes occurred. RPE responses to changes in [K+]o were studied directly in the isolated gecko RPE-choroid. Decreasing [K+]o in the apical bathing solution produced first a hyperpolarization of the apical membrane, followed by a delayed hyperpolarization of the basal membrane, a sequence of membrane potential changes identical to those evoked by light. Increasing [K+]o produced the opposite sequence of membrane potential changes. In both preparations, the delayed basal membrane potentials were accompanied by changes in basal membrane conductance. The mechanism by which a change in extracellular [K+] outside the apical membrane leads to a polarization of the basal membrane remains to be determined.


1993 ◽  
Vol 70 (4) ◽  
pp. 1656-1668 ◽  
Author(s):  
R. P. Gallemore ◽  
E. Hernandez ◽  
R. Tayyanipour ◽  
S. Fujii ◽  
R. H. Steinberg

1. We characterized the basolateral membrane Cl- and K+ conductances of the dark-adapted chick neural retina-retinal pigment epithelium (RPE)-choroid preparation. Conventional microelectrodes were used to measure apical (V(ap)) and basolateral (Vba) membrane voltage, and double-barreled Cl- and K+ selective microelectrodes were used to follow the time course and magnitude of ion concentration changes outside the basolateral (basal) membrane. 2. In response to a fivefold decrease in basal [Cl-]o, Vba rapidly depolarized by 6.4 +/- 0.7 (SE) mV, and the apparent resistance of the basolateral membrane (Rba) increased. The Cl- channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) suppressed the Vba depolarization by 40% and blocked the Rba increase. Estimates of the relative Cl- conductance (transference number, TCl) from the DIDS-sensitive component of the Cl- diffusion potential gave an average value for TCl of 0.22 +/- 0.03. 3. Further evidence for a Cl- conductance was obtained by measuring changes in intracellular Cl- activity (aCli) induced by transtissue current. Depolarizing Vba elevated aiCl, whereas hyperpolarizing Vba had the opposite effect, consistent with conductive Cl- movement across the basal membrane. TCl estimated from these data averaged 0.23 +/- 0.02. 4. In response to a sixfold increase in basal [K+]o, Vba depolarized 6.1 +/- 0.8 mV. The amplitude of this K+ diffusion potential was inhibited 44 and 67% by 5 and 10 mM Ba2+, respectively. TK was estimated to be 0.61 +/- 0.05. 5. The rapid c-wave membrane hyperpolarizations in response to the light-evoked decrease in subretinal [K+]o were used to calculate the equivalent resistances of the apical membrane (R(ap)), basolateral membrane (Rba), and the paracellular shunt pathway (Rs). They were 152 +/- 10, 615 +/- 38, and 138 +/- 7 omega.cm2 (n = 11 tissues), respectively. From these data the equivalent electromotive force for the basal (Eba) and apical (Eap) membranes were estimated to be -45 +/- 2 and -77 +/- 1 mV, respectively. This estimate of Eba is in the range of that predicted from our estimates of TCl and TK, indicating that, in the dark-adapted chick retina, the resting conductance of the basal membrane can largely be accounted for by the Cl- and K+ conductances described here.


1993 ◽  
Vol 70 (4) ◽  
pp. 1669-1680 ◽  
Author(s):  
R. P. Gallemore ◽  
R. H. Steinberg

1. We studied the ionic mechanism of the light-peak voltage of the DC electroretinogram (DC ERG) in an in vitro preparation of chick neural retina-retinal pigment epithelium (RPE)-choroid. The light peak originates from a depolarization of the RPE basolateral (basal) membrane, associated with an increase in its conductance. Using conventional and Cl(-)-selective microelectrodes, we tested the hypothesis that the light-peak voltage is generated by an increase in Cl- conductance (gCl) of the basolateral (basal) membrane. 2. Perfusion of the RPE basal membrane with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), a known blocker of gCl in chick RPE, suppressed both the light-peak depolarization and the accompanying conductance increase of the basal membrane. 3. Using sustained transepithelial current to clamp the basal membrane potential at different levels, we estimated the reversal potential of the light peak. At membrane potentials above the equilibrium potential for Cl- (ECl = -40 +/- 10 mV mean +/- SE), light-peak polarity was reversed. Current-voltage (I-V) curves measured in the dark and at the peak of the light peak also gave a reversal potential in the same range as ECl. In addition, shifting ECl by changing intracellular Cl- (aCli) via passage of transepithelial current or perfusing the apical side of the RPE with the Cl- uptake blocker, furosemide, shifted the light-peak reversal potential in the same direction as the change in ECl. 4. The transference number for Cl-, TCl, was estimated from step decreases in basal Cl- and increased from 0.20 +/- 0.01 in the dark to 0.31 +/- 0.01 during the light peak. These results indicate an average increase of 55% in the relative conductance of the basal membrane for Cl-. 5. Light-evoked changes in aCli, measured with Cl(-)-selective microelectrodes, were too small to account for the change in basal membrane potential during the light peak. These data strongly support the hypothesis that the light peak originates from an increase in RPE basal membrane permeability to Cl-. 6. We also obtained support for the model of Joseph and Miller that the fast-oscillation trough of the DC ERG, generated by a delayed basal membrane hyperpolarization of the RPE, originates from light-evoked modulation of the Cl- transport pathway. Perfusing either the apical side of the RPE with furosemide or the basal side with DIDS suppressed the fast oscillation. The delayed basal hyperpolarization reversed polarity at membrane potentials positive to ECl.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 113 (4) ◽  
pp. 1085-1099 ◽  
Author(s):  
Ivy S. Samuels ◽  
Brent A. Bell ◽  
Ariane Pereira ◽  
Joseph Saxon ◽  
Neal S. Peachey

In the diabetic retina, cellular changes in the retinal pigment epithelium (RPE) and neurons occur before vision loss or diabetic retinopathy can be identified clinically. The precise etiologies of retinal pathology are poorly defined, and it remains unclear if the onset and progression of cellular dysfunction differ between type 1 and type 2 diabetes. Three mouse models were used to compare the time course of RPE involvement in type 1 and type 2 diabetes. C57BL/6J mice injected with streptozotocin (STZ mice) modeled type 1 diabetes, whereas Lepr db/db mice on both BKS and B6.BKS background strains modeled type 2 diabetes. Electroretinogram (ERG)-based techniques were used to measure light-evoked responses of the RPE (direct current-coupled ERG, dc-ERG) and the neural retina (a-wave, b-wave). Following onset of hyperglycemia, a-wave and b-wave amplitudes of STZ mice declined progressively and by equivalent degrees. Components of the dc-ERG were also altered, with the largest reduction seen in the c-wave. Lepr db/db mice on the BKS strain (BKS.Lepr) displayed sustained hyperglycemia and a small increase in insulin, whereas Lepr db/db mice on the B6.BKS background (B6.BKS.Lepr) were transiently hyperglycemic and displayed severe hyperinsulinemia. BKS.Lepr mice exhibited sustained reductions in the dc-ERG c-wave, fast oscillation, and off response that were not attributable to reduced photoreceptor activity; B6.BKS.Lepr mice displayed transient reductions in the c-wave and fast oscillation that correlated with hyperglycemia and magnitude of photoreceptor activity. In summary, all mouse models displayed altered RPE function concomitant with the onset of hyperglycemia. These results suggest that RPE function is directly reduced by elevated blood glucose levels. That RPE dysfunction was reversible and mitigated in hyperinsulinemic B6.BKS.Lepr mice provides insight into the underlying mechanism.


2007 ◽  
Vol 97 (5) ◽  
pp. 3731-3735 ◽  
Author(s):  
Jiang Wu ◽  
Alan D. Marmorstein ◽  
Jörg Striessnig ◽  
Neal S. Peachey

In response to light, the mouse retinal pigment epithelium (RPE) generates a series of slow changes in potential that are referred to as the c-wave, fast oscillation (FO), and light peak (LP) of the electroretinogram (ERG). The LP is generated by a depolarization of the basolateral RPE plasma membrane by the activation of a calcium-sensitive chloride conductance. We have previously shown that the LP is reduced in both mice and rats by nimodipine, which blocks voltage-dependent calcium channels (VDCCs) and is abnormal in lethargic mice, carrying a null mutation in the calcium channel β4 subunit. To define the α1 subunit involved in this process, we examined mice lacking CaV1.3. In comparison with wild-type (WT) control littermates, LPs were reduced in CaV1.3−/− mice. This pattern matched closely with that previously noted in lethargic mice, confirming a role for VDCCs in regulating the signaling pathway that culminates in LP generation. These abnormalities do not reflect a defect in rod photoreceptor activity, which provides the input to the RPE to generate the c-wave, FO, and LP, because ERG a-waves were comparable in WT and CaV1.3−/− littermates. Our results identify CaV1.3 as the principal pore-forming subunit of VDCCs involved in stimulating the ERG LP.


1986 ◽  
Vol 250 (5) ◽  
pp. F781-F784 ◽  
Author(s):  
S. Tsuboi ◽  
R. Manabe ◽  
S. Iizuka

Transport of Na and Cl across the isolated dog retinal pigment epithelium (RPE) choroid was investigated. Under the short-circuit condition, a net Na flux was observed from choroid to retina and a net Cl flux was determined in the opposite direction. The current created by the net flux of these two ions was larger than the short-circuit current (SCC). Addition of 10(-5) M ouabain to the apical side inhibited net fluxes of both Na and Cl, whereas it reduced the SCC 84%. Addition of 10(-4) M furosemide to the apical side inhibited net Cl flux but had no effect on the net Na transport. The 10(-4) M furosemide reduced the SCC 38%. These drugs had no effect when applied to the basal side. Thus the transport of both Na and Cl depends on the Na-K-ATPase in the apical membrane of the dog RPE. A furosemide-sensitive neutral carrier at the apical membrane is suggested for the transport of Cl. Replacement of HCO3 with SO4 in the bathing solution caused an increase in the SCC, indicating the choroid-to-retina movement of HCO3 across the short-circuited dog RPE choroid.


1985 ◽  
Vol 86 (6) ◽  
pp. 853-876 ◽  
Author(s):  
E R Griff ◽  
Y Shirao ◽  
R H Steinberg

This paper presents electrophysiological evidence that small changes in [K+]o modulate the activity of the Na+-K+ pump on the apical membrane of the frog retinal pigment epithelium (RPE). This membrane also has a large relative K+ conductance so that lowering [K+]o hyperpolarizes it and therefore increases the transepithelial potential (TEP). Ba2+, a K+ channel blocker, eliminated these normal K+-evoked responses; in their place, lowering [K+]o evoked an apical depolarization and TEP decrease that were blocked by apical ouabain or strophanthidin. These data indicate that Ba2+ blocked the major K+ conductance(s) of the RPE apical membrane and unmasked a slowing of the normally hyperpolarizing electrogenic Na+-K+ pump caused by lowering [K+]o. Evidence is also presented that [K+]o modulates the pump in the isolated RPE under physiological conditions (i.e., without Ba2+). In the intact retina, light decreases subretinal [K+]o and produces the vitreal-positive c-wave of the electroretinogram (ERG) that originates primarily in the RPE from a hyperpolarization of the apical membrane and TEP increase. When Ba2+ was present in the retinal perfusate, the apical membrane depolarized in response to light and the TEP decreased so that the ERG c-wave inverted. The retinal component of the c-wave, slow PIII, was abolished by Ba2+. The effects of Ba2+ were completely reversible. We conclude that Ba2+ unmasks a slowing of the RPE Na+-K+ pump by the light-evoked decrease in [K+]o. Such a response would reduce the amplitude of the normal ERG c-wave.


Sign in / Sign up

Export Citation Format

Share Document