Evolution of Low-Mass Stars. V. Minimum Mass for the Deuterium Main Sequence

1973 ◽  
Vol 180 ◽  
pp. 195 ◽  
Author(s):  
Allen S. Grossman ◽  
Harold C. Graboske
2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


1984 ◽  
Vol 105 ◽  
pp. 123-138
Author(s):  
R.D. Cannon

This review will attempt to do two things: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars, and (ii) point out some problem areas where observations and theory do not seem to agree very well. This is of course too vast a field of research to be covered in one brief review, so I shall concentrate on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster I shall consider successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase.


2003 ◽  
Vol 211 ◽  
pp. 163-170 ◽  
Author(s):  
John R. Stauffer ◽  
David Barrado y Navascués ◽  
Jerome Bouvier ◽  
Nicholas Lodieu ◽  
Mark McCaughrean

We have obtained a new, deep, wide-field optical imaging survey of the young Alpha Persei cluster which reveals a well-populated lower main sequence extending into the substellar mass regime. Subsequent infrared photometry confirms that most of the candidate brown dwarfs are indeed likely to be cluster members, with a predicted minimum mass of order 0.035 solar masses. We have combined the new candidate list with previous member catalogs to derive an IMF for Alpha Per; the slope of the IMF at the low mass end is α ~ 0.66. The Alpha Per IMF slope is thus very similar to that found in the Pleiades.


1989 ◽  
Vol 342 ◽  
pp. 1003 ◽  
Author(s):  
Ben Dorman ◽  
Lorne A. Nelson ◽  
W. Y. Chau

2003 ◽  
Vol 211 ◽  
pp. 119-122
Author(s):  
Frederick M. Walter ◽  
William H. Sherry ◽  
Scott J. Wolk

VRI images within the belt of Orion and the Ori OB1a association reveal a pre-main sequence locus extending to below our completeness limit of about V=21. We report here on followup JHK imaging and optical and near–IR spectroscopy of the faintest and reddest of the PMS candidates. We find that they are unreddened mid-to-late M “stars” which fall on a few million year isochrone. Masses are largely substellar, reaching as low as about 0.02 M⊙ (20 Jovian masses). The space density of the substellar objects is high.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mai Yamashita ◽  
Yoichi Itoh ◽  
Yuhei Takagi

Abstract We investigated the chromospheric activity of 60 pre-main-sequence (PMS) stars in four molecular clouds and five moving groups. It is considered that strong chromospheric activity is driven by the dynamo processes generated by stellar rotation. In contrast, several researchers have pointed out that the chromospheres of PMS stars are activated by mass accretion from their protoplanetary disks. In this study, the Ca ii infrared triplet (IRT) emission lines were investigated utilizing medium- and high-resolution spectroscopy. The observations were conducted with Nayuta/MALLS and Subaru/HDS. Additionally, archive data obtained by Keck/HIRES, VLT/UVES, and VLT/X-Shooter were used. The small ratios of the equivalent widths indicate that Ca ii IRT emission lines arise primarily in dense chromospheric regions. Seven PMS stars show broad emission lines. Among them, four PMS stars have more than one order of magnitude brighter emission line fluxes compared to the low-mass stars in young open clusters. The four PMS stars have a high mass accretion rate, which indicates that the broad and strong emission results from a large mass accretion. However, most PMS stars exhibit narrow emission lines. No significant correlation was found between the accretion rate and flux of the emission line. The ratios of the surface flux of the Ca ii IRT lines to the stellar bolometric luminosity, $R^{\prime }_{\rm IRT}$, of the PMS stars with narrow emission lines are as large as the largest $R^{\prime }_{\rm IRT}$ of the low-mass stars in the young open clusters. This result indicates that most PMS stars, even in the classical T Tauri star stage, have chromospheric activity similar to zero-age main-sequence stars.


2007 ◽  
Vol 3 (S243) ◽  
pp. 231-240 ◽  
Author(s):  
Jérôme Bouvier

AbstractStar-disk interaction is thought to drive the angular momentum evolution of young stars. In this review, I present the latest results obtained on the rotational properties of low mass and very low mass pre-main sequence stars. I discuss the evidence for extremely efficient angular momentum removal over the first few Myr of pre-main sequence evolution and describe recent results that support an accretion-driven braking mechanism. Angular momentum evolution models are presented and their implication for accretion disk lifetimes discussed.


2003 ◽  
Vol 211 ◽  
pp. 413-416 ◽  
Author(s):  
D. Ségransan ◽  
X. Delfosse ◽  
T. Forveille ◽  
J.L. Beuzit ◽  
C. Perrier ◽  
...  

We present new accurate masses at the bottom of the main sequence as well as an improved empirical mass-luminosity relation for very low mass stars in the visible and near infrared. Masses were obtained by combining very accurate radial velocities and adaptive optics images of multiple stars obtained at different orbital phases.


Sign in / Sign up

Export Citation Format

Share Document