scholarly journals Mass-Luminosity Relations of Very Low Mass Stars

2003 ◽  
Vol 211 ◽  
pp. 413-416 ◽  
Author(s):  
D. Ségransan ◽  
X. Delfosse ◽  
T. Forveille ◽  
J.L. Beuzit ◽  
C. Perrier ◽  
...  

We present new accurate masses at the bottom of the main sequence as well as an improved empirical mass-luminosity relation for very low mass stars in the visible and near infrared. Masses were obtained by combining very accurate radial velocities and adaptive optics images of multiple stars obtained at different orbital phases.

2016 ◽  
Vol 128 (968) ◽  
pp. 104501 ◽  
Author(s):  
Peter Gao ◽  
Plavchan P. ◽  
Gagné J. ◽  
Furlan E. ◽  
Bottom M. ◽  
...  

1998 ◽  
Vol 11 (1) ◽  
pp. 136-136
Author(s):  
Hans Zinnecker

Abstract Diffraction limited near-infrared H-band (1.6 μm) NICMOS HST images are scheduled to be obtained in mid-October 1997 of the young cluster NGC 2070 (age 3.5 Myr) in the 30 Dor giant HII region in the LMC. The aim is to search for the low-mass (M < 2 Mʘ) low-luminosity, red pre-Main Sequence stellar population and to establish the H-band infrared luminosity function. With the NICMOS we can now determine whether the IMF in this prototypical extragalactic starburst cluster is deficient in subsolar low-mass stars or not. The best ground-based data can sample only M > 2 Mʘ. In principle, NICMOS in the H-band (F160W) is sensitive enough to reach a magnitude of ~ 23.5 in a relatively short integration time, which indeed corresponds to the fantastic possibility to detect young stellar objects with masses near the hydrogen burning limit (M=0.1 Mʘ) according to pre-Main Sequence evolutionary models. Even if we could reach only H = 22.5 (i.e. M=0.4 Mʘ), our observations will still go a long way in directly answering, by star counts, whether the IMF in starburst galaxies is low-mass deficient or not, with all the corresponding far-reaching implications. The observations would also tell us whether the 30 Dor cluster can be regarded as a prototype young globular cluster. This possibility would be ruled out, if we found NGC 2070 to be low-mass deficient, because old globular clusters do have a rich population of low-mass stars.


2006 ◽  
Vol 2 (S240) ◽  
pp. 114-116
Author(s):  
Rainer Köhler ◽  
Monika G. Petr-Gotzens ◽  
Mark J. McCaughrean ◽  
Jerome Bouvier ◽  
Gaspard Duchêne ◽  
...  

AbstractWe report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5–15 arcmin (0.65 – 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 – 1.12 arcsec (60 – 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M⊙ is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (< 3′ from θ1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active. A detailed report of this work has been published in Astronomy & Astrophysics (Köhler et al. 2006).


2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


2001 ◽  
Vol 200 ◽  
pp. 169-180 ◽  
Author(s):  
Mark J. McCaughrean

We summarise the results of recent optical and near-infrared imaging studies of the binary fraction among young low-mass stars in the dense Orion Trapezium Cluster. Over the separation range ∼ 30–500 AU and within the observational errors, there appears to be no excess of binary systems in the cluster relative to the main sequence field star population. Over the separation range ∼ 1000–5000 AU, the cluster is deficient in binaries relative to the field. Both results are in contrast to those found for the more distributed population of young stars in the Taurus-Auriga dark clouds, which is overabundant in binaries by roughly a factor of two. We briefly discuss possible origins for this difference and observational tests which may distinguish between them, and the implications these results have for our understanding of the typical environment where most young stars are born.


2009 ◽  
Vol 26 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Warrick A. Lawson ◽  
Lisa A. Crause

AbstractWe present the results of a photometric survey for variability in ten X-ray-emitting low-mass stars in the Chamaeleon region. Eight of the stars we observed are bona fide pre-main-sequence members of the ∼2 Myr-old Chamaeleon I star-forming cloud. The other two stars are young with high levels of relative X-ray emission, but with discordant proper motions they are probable non-members of the cloud. In six of the stars we monitored, periodic variations on timescales of 2.5–11.5 d were detected, that we ascribe to stellar rotation and the presence of cool starspots. Two other stars, CHXR 20 and CHXR 85, show large amplitude variations at visual and near-infrared wavelengths and are candidate eclipsing binaries. Compared to the rotational properties of low-mass stars in the ≈8 Myr-old η Chamaeleontis cluster, we find that the older η Chamaeleontis stars have several times higher surface specific angular momentum than the younger Chamaeleon I stars. The apparent increase in angular momentum between ∼2 and 8 Myr might be due to changes in stellar internal structure as the stars evolve, or evidence for a different rotational history between members of the two star-forming regions.


2004 ◽  
Vol 221 ◽  
pp. 313-319
Author(s):  
Motohide Tamura ◽  
Misato Fukagawa ◽  
Masahiko Hayashi ◽  

A cold near-infrared stellar coronagraph combined with adaptive optics (CIAO) is introduced. As an open-use instrument on the Subaru 8.2-m telescope, it has been used for several star formation studies with high spatial resolutions (from natural seeing of about 0.6 arcsec down to 0.07 arcsec with adaptive optics). A brief explanation is described of the instrument as well as its current main project of systematic surveys of disks and young companions around T Tauri stars and Herbig Ae/Be stars. In particular, observations of HL Tau are presented in some details. Our images of HL Tau show several new circumstellar features including the presence of a red H - K color region of ∼150 AU, probably corresponding to the small circumstellar disk. The observations of a high density stellar cluster of MWC 137 are also reported. It appears to be a cluster of very low-mass stars around Herbig Be star or a cluster of B stars around a super giant.


2018 ◽  
Vol 615 ◽  
pp. A148 ◽  
Author(s):  
Francesco Damiani

Context. The low-mass members of OB associations, expected to be a major component of their total population, are in most cases poorly studied because of the difficulty of selecting these faint stars in crowded sky regions. Our knowledge of many OB associations relies on only a relatively small number of massive members. Aims. We study here the Sco OB1 association, with the aim of a better characterization of its properties, such as global size and shape, member clusters and their morphology, age and formation history, and total mass. Methods. We use deep optical and near-infrared (NIR) photometry from the VPHAS+ and VVV surveys, over a wide area (2.6° × 2.6°), complemented by Spitzer infrared (IR) data, and Chandra and XMM-Newton X-ray data. A new technique is developed to find clusters of pre-main sequence M-type stars using suitable color-color diagrams, complementing existing selection techniques using narrow-band Hα photometry or NIR and ultraviolet (UV) excesses, and X-ray data. Results. We find a large population of approximately 4000 candidate low-mass Sco OB1 members whose spatial properties correlate well with those of Hα-emission, NIR-excess, UV-excess, and X-ray detected members, and unresolved X-ray emission. The low-mass population is spread among several interconnected subgroups: they coincide with the HII regions G345.45+1.50 and IC4628, and the rich clusters NGC 6231 and Trumpler 24, with an additional subcluster intermediate between these two. The total mass of Sco OB1 is estimated to be ~ 8500 M⊙. Indication of a sequence of star-formation events is found, from South (NGC 6231) to North (G345.45+1.50). We suggest that the diluted appearance of Trumpler 24 indicates that the cluster is now dissolving into the field, and that tidal stripping by NGC 6231 nearby contributes to the process.


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


Sign in / Sign up

Export Citation Format

Share Document