Energetic electrons, Type III radio bursts, and impulsive solar flare X-rays

1981 ◽  
Vol 247 ◽  
pp. 1113 ◽  
Author(s):  
S. R. Kane
1968 ◽  
Vol 46 (10) ◽  
pp. S757-S760 ◽  
Author(s):  
R. P. Lin

The > 40-keV solar-flare electrons observed by the IMP III and Mariner IV satellites are shown to be closely correlated with solar radio and X-ray burst emission. In particular, intense type III radio bursts are observed to accompany solar electron-event flares. The energies of the electrons, the total number of electrons, and the size of the electron source at the sun can be inferred from radio observations. The characteristics of the electrons observed in interplanetary space are consistent with these radio observations. Therefore these electrons are identified as the exciting agents of the type III emission. It has been noted that the radio and X-ray bursts are part of the flash phase of flares. The observations indicate that a striking feature of the flash phase is the production of electrons of 10–100 keV energies.


1974 ◽  
Vol 57 ◽  
pp. 421-422 ◽  
Author(s):  
Kenneth J. Frost

An instrument aboard the Fifth Orbiting Solar Observatory has observed hard solar X-rays from January 1969 to May 1972. A large number of X-ray bursts generated by solar cosmic ray flares have been observed. The X-ray bursts consist, in general, of two non-thermal components. The earliest occurring non-thermal component, coincident with the explosive phase, consists of a group of one to about ten X-ray bursts that are, for each burst, approximately 10 s duration and symmetrical in rise and decay. The time structure and multiplicity of these bursts is remarkably similar to that found in type III radio bursts in the meterwave band. The spectra of these bursts steepens sharply at energies greater than 100 keV indicating a limit at this energy for electron acceleration during the explosive or flash phase of the flare. For several flares these multiple X-ray bursts have occurred in coincidence with a group of type III bursts.


Solar Physics ◽  
2016 ◽  
Vol 291 (11) ◽  
pp. 3427-3438 ◽  
Author(s):  
E. G. Kupriyanova ◽  
L. K. Kashapova ◽  
H. A. S. Reid ◽  
I. N. Myagkova

2020 ◽  
Author(s):  
Gottfried Mann ◽  
Christian Vocks ◽  
Mario Bisi ◽  
Eoin Carley ◽  
Bartosz Dabrowski ◽  
...  

<p>Type III radio bursts are a common phenomenon the Sun’s nonthermal radio radiation. They appear as stripes of enhanced radio emission with a rapid drift from high to low frequencies in dynamic radio spectra. They are considered as the radio signatures of beams of energetic electrons travelling along magnetic field lines from the solar corona into the interplanetary space. With the ground based radio interferometer LOFAR and the instrument FIELDS onboard NASA’s “Parker Solar Probe” (PSP) , type III radio bursts can be observed simultaneously from high (10-240 MHz) to low frequencies (0.01-20 MHz) with LOFAR and PSP’s FIELDs, respectively. That allows to track these electron beams from the corona up to the interplanetary space. Assuming that a population of energetic electrons is initially injected, the velocity distribution function of these electrons evolves into a beam like one. Such distribution function leads to the excitation of Langmuir waves which convert into radio waves finally observed as type II radio bursts. Numerical calculations of the electron-beam-plasma interaction reveal that the Langmuir waves are excited by different parts of the energetic electrons at different distances in the corona and interplanetary space. This result is compared with special type III radio bursts observed with LOFAR and PSP’s FIELDS.</p>


2008 ◽  
Vol 680 (2) ◽  
pp. L149-L152 ◽  
Author(s):  
S. Christe ◽  
S. Krucker ◽  
R. P. Lin
Keyword(s):  
X Rays ◽  

2018 ◽  
Vol 611 ◽  
pp. A57 ◽  
Author(s):  
G. Mann ◽  
F. Breitling ◽  
C. Vocks ◽  
H. Aurass ◽  
M. Steinmetz ◽  
...  

The Sun’s activity leads to bursts of radio emission, among other phenomena. An example is type-III radio bursts. They occur frequently and appear as short-lived structures rapidly drifting from high to low frequencies in dynamic radio spectra. They are usually interpreted as signatures of beams of energetic electrons propagating along coronal magnetic field lines. Here we present novel interferometric LOFAR (LOw Frequency ARray) observations of three solar type-III radio bursts and their reverse bursts with high spectral, spatial, and temporal resolution. They are consistent with a propagation of the radio sources along the coronal magnetic field lines with nonuniform speed. Hence, the type-III radio bursts cannot be generated by a monoenergetic electron beam, but by an ensemble of energetic electrons with a spread distribution in velocity and energy. Additionally, the density profile along the propagation path is derived in the corona. It agrees well with three-fold coronal density model by (1961, ApJ, 133, 983).


2014 ◽  
Vol 567 ◽  
pp. A85 ◽  
Author(s):  
Hamish A. S. Reid ◽  
Nicole Vilmer ◽  
Eduard P. Kontar
Keyword(s):  
X Rays ◽  

Sign in / Sign up

Export Citation Format

Share Document