Hydrogen and helium burning in zero-metal asymptotic giant branch stars and the existence of thresholds (in core mass and CNO abundance) for the occurrence of helium shell flashes

1984 ◽  
Vol 287 ◽  
pp. 749 ◽  
Author(s):  
M. Y. Fujimoto ◽  
I., Jr. Iben ◽  
A. Chieffi ◽  
A. Tornambe
1991 ◽  
Vol 145 ◽  
pp. 257-274
Author(s):  
Icko Iben

A brief review is given of the structure of asymptotic giant branch (AGB) stars and of the characteristics of the thermal pulses which these stars experience. Following a pulse, model AGB stars with a large core mass easily dredge up fresh carbon, which is the main product of incomplete helium burning, and s-process isotopes, which are made as a consequence of the activation of the 22Ne neutron source. Model AGB stars of small core mass activate the 13C neutron source and produce s-process isotopes in nearly the solar system distribution. They also dredge up fresh carbon and s-process isotopes, but only if overshoot or some other form of “extra” mixing beyond the lower boundary of the convective envelope is invoked.


2002 ◽  
Vol 19 (4) ◽  
pp. 515-526 ◽  
Author(s):  
A. I. Karakas ◽  
J. C. Lattanzio ◽  
O. R. Pols

AbstractWe present new evolutionary sequences for low and intermediate mass stars (1−6M⊙) for three different metallicities, Z = 0.02, 0.008, and 0.004. We evolve the models from the pre-main sequence to the thermally-pulsing asymptotic giant branch phase. We have two sequences of models for each mass, one which includes mass loss and one without mass loss. Typically 20 or more pulses have been followed for each model, allowing us to calculate the third dredge-up parameter for each case. Using the results from this large and homogeneous set of models, we present an approximate fit for the core mass at the first thermal pulse, Mc1, as well as for the third dredge-up efficiency parameter, λ, and the core mass at the first dredge-up episode, Mcmin, as a function of metallicity and total mass. We also examine the effect of a reduced envelope mass on the value of λ.


1999 ◽  
Vol 190 ◽  
pp. 370-371
Author(s):  
A. V. Sweigart

We have investigated the possibility that radiation pressure might trigger planetary nebula (PN) ejection during helium-shell flashes in asymptotic-giant-branch (AGB) stars. We find that the outward flux at the base of the hydrogen envelope during a flash will reach the Eddington limit when the envelope mass Menv falls below a critical value that depends on the core mass MH and composition. These results may help to explain the helium-burning PN nuclei found in the Magellanic Clouds.


1997 ◽  
Vol 476 (1) ◽  
pp. 319-326 ◽  
Author(s):  
K. Justtanont ◽  
A. G. G. M. Tielens ◽  
C. J. Skinner ◽  
Michael R. Haas

2020 ◽  
Vol 501 (1) ◽  
pp. 933-947
Author(s):  
Javiera Parada ◽  
Jeremy Heyl ◽  
Harvey Richer ◽  
Paul Ripoche ◽  
Laurie Rousseau-Nepton

ABSTRACT We introduce a new distance determination method using carbon-rich asymptotic giant branch stars (CS) as standard candles and the Large and Small Magellanic Clouds (LMC and SMC) as the fundamental calibrators. We select the samples of CS from the ((J − Ks)0, J0) colour–magnitude diagrams, as, in this combination of filters, CS are bright and easy to identify. We fit the CS J-band luminosity functions using a Lorentzian distribution modified to allow the distribution to be asymmetric. We use the parameters of the best-fitting distribution to determine if the CS luminosity function of a given galaxy resembles that of the LMC or SMC. Based on this resemblance, we use either the LMC or SMC as the calibrator and estimate the distance to the given galaxy using the median J magnitude ($\overline{J}$) of the CS samples. We apply this new method to the two Local Group galaxies NGC 6822 and IC 1613. We find that NGC 6822 has an ‘LMC-like’ CS luminosity function, while IC 1613 is more ‘SMC-like’. Using the values for the median absolute J magnitude for the LMC and SMC found in Paper I we find a distance modulus of μ0 = 23.54 ± 0.03 (stat) for NGC 6822 and μ0 = 24.34 ± 0.05 (stat) for IC 1613.


2021 ◽  
Author(s):  
Krati Joshi ◽  
Ashakiran Maibam ◽  
Sailaja Krishnamurty

Silicon carbide clusters are significant due to their predominant occurrence in meteoric star dust, particularly in carbon rich asymptotic giant branch stars. Of late, they have also been recognized as...


2004 ◽  
Vol 350 (2) ◽  
pp. 407-426 ◽  
Author(s):  
Robert G. Izzard ◽  
Christopher A. Tout ◽  
Amanda I. Karakas ◽  
Onno R. Pols

Sign in / Sign up

Export Citation Format

Share Document