The mechanical equilibrium of interstellar clouds - Scaling relations for gas density, line width, and magnetic field strength

1988 ◽  
Vol 328 ◽  
pp. 299 ◽  
Author(s):  
Robert C., Jr. Fleck
2003 ◽  
Vol 20 (3) ◽  
pp. 252-256 ◽  
Author(s):  
Brent A. Groves ◽  
Jungyeon Cho ◽  
Michael Dopita ◽  
Alex Lazarian

AbstractThe radio–far infrared correlation is one of the tightest correlations found in astronomy. Many of the models explaining this correlation rely on the association of global magnetic field strength with gas density. In this letter we put forward that the physical reason for this association lies within the processes of magnetohydrodynamic turbulence.


1990 ◽  
Vol 140 ◽  
pp. 239-240 ◽  
Author(s):  
George Helou ◽  
M. D. Bicay

We propose a physical model for understanding the tight correlation between far-infrared and non-thermal radio luminosities in star-forming galaxies. This approach suggests that the only constraint implied by the correlation is a universal relation whereby magnetic field strength scales with gas density to a power 1/3≤β≤<2/3.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-579-Pr2-582 ◽  
Author(s):  
S. Tumanski ◽  
M. Stabrowski

2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1988 ◽  
Vol 12 (2) ◽  
pp. 89-96 ◽  
Author(s):  
R. Lufkin ◽  
M. Anselmo ◽  
J. Crues ◽  
W. Smoker ◽  
W. Hanafee

Sign in / Sign up

Export Citation Format

Share Document