Chemical composition of open clusters. I - Fe/H from high-resolution spectroscopy. II - C/H and C/Fe in F dwarfs from high-resolution spectroscopy

1990 ◽  
Vol 351 ◽  
pp. 467 ◽  
Author(s):  
Ann Merchant Boesgaard ◽  
Eileen D. Friel
Author(s):  
F. Nicastro ◽  
J. Kaastra ◽  
C. Argiroffi ◽  
E. Behar ◽  
S. Bianchi ◽  
...  

AbstractMetals form an essential part of the Universe at all scales. Without metals we would not exist, and the Universe would look completely different. Metals are primarily produced via nuclear processes in stars, and spread out through winds or explosions, which pollute the surrounding space. The wanderings of metals in-and-out of astronomical objects are crucial in determining their own evolution and thus that of the Universe as a whole. Detecting metals and assessing their relative and absolute abundances and energetics can thus be used to trace the evolution of these cosmic components. The scope of this paper is to highlight the most important open astrophysical problems that will be central in the next decades and for which a deep understanding of the Universe’s wandering metals, their physical and kinematical states, and their chemical composition represents the only viable solution. The majority of these studies can only be efficiently performed through High Resolution Spectroscopy in the soft X-ray band.


2008 ◽  
Vol 493 (1) ◽  
pp. 309-316 ◽  
Author(s):  
N. C. Santos ◽  
C. Lovis ◽  
G. Pace ◽  
J. Melendez ◽  
D. Naef

2016 ◽  
Vol 12 (S323) ◽  
pp. 390-391
Author(s):  
Sheila N. Flores-Dúran ◽  
Miriam Peña ◽  
María T. Ruiz

AbstractWe present high resolution spectroscopy obtained with MIKE-Magellan and MES OAN-SPM of a number of planetary nebulae (PNe) and H ii regions, distributed along the dwarf irregular galaxy NGC 3109 and compare their kinematical behavior with the one of H i data. We aim to determine if there is a kinematical connection among these objects. We also perform a revision of the chemical composition of PNe and H ii regions in this galaxy and discuss it in comparison with stellar evolution models.


2018 ◽  
Vol 14 (S343) ◽  
pp. 291-300
Author(s):  
Paolo Ventura ◽  
Franca D’Antona ◽  
Marcella Di Criscienzo ◽  
Flavia Dell’Agli ◽  
Marco Tailo

AbstractThe results from high-resolution spectroscopy and accurate photometry have challenged the traditional paradigm that stars in globular clusters (GC) are simple stellar populations, rather suggesting that these structures harbor distinct groups of stars, differing in the chemical composition, particularly in the abundances of the light elements, from helium to silicon. Because this behavior is not shared by field stars, it is generally believed that some self-enrichment mechanism must have acted in GC, such that new stellar generations formed from the ashes of stars belonging to the original population. In this review, after presenting the state-of-the-art of the observations of GC stars, we discuss the possibility that the pollution of the intra-cluster medium was provided by the winds of AGB stars of initial mass above ∼3 M⊙. These objects evolve with time scales of 40 − 100 Myr and contaminate their surroundings with gas processed by p-capture nucleosynthesis, in agreement with the chemical patterns traced by GC stars.


2020 ◽  
Vol 494 (1) ◽  
pp. 1470-1489
Author(s):  
Cintia F Martinez ◽  
N Holanda ◽  
C B Pereira ◽  
N A Drake

ABSTRACT We present a detailed high-resolution spectroscopic analysis of 12 red giant stars, in single and binaries or multiples systems, classified as members of the intermediate-age (631 Myr) open cluster NGC 2539. We used FEROS echelle spectra and the standard LTE analysis to derive the atmospheric parameters for the stars and the abundance ratios of light elements (Li, C, N), light odd-Z elements (Na, Al), α-elements (Mg, Si, Ca, Ti), Fe-group elements (Cr, Fe, Ni), and n-capture elements (Y, Zr, Ce, Nd, Eu). Our results show that the sample star of NGC 2539 has low projected rotational velocities and an almost solar metallicity, with a mean of [Fe/H] = −0.03 ± 0.07 dex. The abundance pattern displays for the analyzed stars are, in general, similar to those presented by solar neighborhood stars, including giant members of others open clusters. In particular, light elements and Na abundance pattern shows anomalies resulting from the appearance of enriched material on the stellar surface, produced by mechanisms like the first dredge-up and/or thermohaline and rotation-induced mixing. We also identified two of the spectroscopic binaries of our sample as ‘yellow stragglers’ and we determined the nature of their companions.


2017 ◽  
Vol 13 (S334) ◽  
pp. 312-313
Author(s):  
Orlando J. Katime Santrich ◽  
Silvia Rossi ◽  
Yuri Abuchaim ◽  
Geraldo Gonçalves

AbstractOpen clusters are important objects to study the galactic structure and its dynamical behavior as well as the stellar formation and evolution. We carried out a spectroscopic analysis to derive atmospheric parameters and chemical composition for 52 giant stars within 9 galactic open clusters. We have used the high-resolution spectra from FEROS, HARPS and UVES in the ESO archive. The methodology used is based on LTE-hypothesis. Abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, YII, LaII, CeII, and NdII were calculated. Although most of these clusters present spectroscopic analysis in the literature, some CNO and s-process abundances were not previously estimated or were calculated with high uncertainties. Several lines of such elements were identified and used to calculate new abundances and improve some previous one.


2017 ◽  
Vol 95 (9) ◽  
pp. 862-868 ◽  
Author(s):  
Orlando J. Katime Santrich ◽  
Silvia Rossi

Open clusters are important astrophysical laboratories to study the stellar formation and evolution and to verify the disk structure of the Milky Way. We present calculations of stellar atmospheric parameters and s-process abundances for nine giant stars in the galactic open clusters IC 4651 and IC 4725. These objects have their memberships confirmed from dynamic studies and chemical analysis. The high-resolution spectra are available in the FEROS ESO archive. We have applied a line by line analysis relative to Juno solar spectrum to determine the stellar atmospheric parameters and chemical abundances of Y II, Zr I, La II, Ce II, and Nd II under the local thermal equilibrium hypothesis. The obtained results were compared to the literature values. The derived s-process abundance pattern agrees with the most recent behaviors reported for giant stars in galactic open clusters.


Sign in / Sign up

Export Citation Format

Share Document