Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter

1993 ◽  
Vol 414 ◽  
pp. 36 ◽  
Author(s):  
R. J. Nemiroff ◽  
J. P. Norris ◽  
W. A. D. T. Wickramasinghe ◽  
J. M. Horack ◽  
C. Kouveliotou ◽  
...  
1999 ◽  
Vol 08 (04) ◽  
pp. 507-517 ◽  
Author(s):  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift <z> of the GRBs. In this paper we investigate the effect of evolving lenses on the <z> of GRBs in different cosmological models of the universe. The cosmological parameters Ω and Λ have an effect on the <z> of GRBs. The other factor which can change the <z> is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on <z> of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.


2018 ◽  
Vol 98 (12) ◽  
Author(s):  
Lingyuan Ji ◽  
Ely D. Kovetz ◽  
Marc Kamionkowski

2012 ◽  
Vol 27 (39) ◽  
pp. 1230042 ◽  
Author(s):  
IGNACIO TABOADA

IceCube is a neutrino detector sensitive to energies above 10 GeV. IceCube operates by sensing the Cherenkov light from secondary particles produced in neutrino-matter interactions. One gigaton of highly transparent Antarctic ice is instrumented to achieve this goal. Designed to be modular, IceCube has been collecting data since construction began in 2005. Construction was completed in December 2010. The primary goal of IceCube is to observe astrophysical sources of neutrinos. We present here a summary of IceCube's recent results in atmospheric neutrinos, point sources, diffuse fluxes of neutrinos, cosmogenic neutrinos, a lack of correlation between neutrinos and Gamma Ray Bursts and the search for dark matter.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750097 ◽  
Author(s):  
Xiangyun Fu ◽  
Pengcheng Li

In this paper, we perform a cosmological model-independent test of the cosmic distance–duality relation (CDDR) in terms of the ratio of angular diameter distance (ADD) [Formula: see text] from strong gravitational lensing (SGL) and the ratio of luminosity distance (LD) [Formula: see text] obtained from the joint of type Ia supernovae (SNIa) Union2.1 compilation and the latest Gamma-Ray Bursts (GRBs) data, where the superscripts s and l correspond to the redshifts [Formula: see text] and [Formula: see text] at the source and lens from SGL samples. The purpose of combining GRB data with SNIa compilation is to test CDDR in a wider redshift range. The LD associated with the redshifts of the observed ADD is obtained through two cosmological model-independent methods, namely, method A: binning the SNIa+GRBs data, and method B: reconstructing the function of DL by combining the Crossing Statistic with the smoothing method. We find that CDDR is compatible with the observations at [Formula: see text] confidence level for the power law model which is assumed to describe the mass distribution of lensing systems with method B in a wider redshift range.


Sign in / Sign up

Export Citation Format

Share Document