The optical light curve of Nova Herculis 1991 and of other classical novae

1993 ◽  
Vol 411 ◽  
pp. L29 ◽  
Author(s):  
Elia M. Leibowitz
1999 ◽  
Vol 117 (3) ◽  
pp. 1175-1184 ◽  
Author(s):  
Nicholas B. Suntzeff ◽  
M. M. Phillips ◽  
R. Covarrubias ◽  
M. Navarrete ◽  
J. J. Pérez ◽  
...  

2011 ◽  
Vol 414 (3) ◽  
pp. 2195-2203 ◽  
Author(s):  
S. Adamakis ◽  
S. P. S. Eyres ◽  
A. Sarkar ◽  
R. W. Walsh

2020 ◽  
Vol 641 ◽  
pp. L10
Author(s):  
Takashi J. Moriya ◽  
Pablo Marchant ◽  
Sergei I. Blinnikov

We show that the luminous supernovae associated with ultra-long gamma-ray bursts can be related to the slow cooling from the explosions of hydrogen-free progenitors that are extended by pulsational pair-instability. We have recently shown that some rapidly-rotating hydrogen-free gamma-ray burst progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. These types of progenitors have large radii exceeding 10 R⊙ and they sometimes reach beyond 1000 R⊙ at the time of the core collapse. They are, therefore, promising progenitors of ultra-long gamma-ray bursts. Here, we perform light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 R⊙. The progenitor mass is 50 M⊙ and 5 M⊙ exists in the extended envelope. We use the one-dimensional radiation hydrodynamics code STELLA in which the explosions are initiated artificially by setting given explosion energy and 56Ni mass. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (≲10 days), luminous (≳1043 erg s−1) supernovae in the optical even without energy input from the 56Ni nuclear decay when the explosion energy is more than 1052 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slowly when the 56Ni mass is around 1 M⊙. They also have a fast photospheric velocity above 10 000 km s−1 and a hot photospheric temperature above 10 000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long gamma-ray burst GRB 111209A, can be explained as the cooling phase of the extended progenitor. The subsequent slow light-curve decline can be related to the 56Ni decay energy input. The ultra-long gamma-ray burst progenitors we proposed recently can explain both the ultra-long gamma-ray burst duration and the accompanying supernova properties. When the gamma-ray burst jet is off-axis or choked, the luminous supernovae could be observed as fast blue optical transients without accompanying gamma-ray bursts.


Author(s):  
N. A. Ketsaris ◽  
S. V. Antipin ◽  
S. Yu. Shugarov

1981 ◽  
pp. 405-406
Author(s):  
C. Chevalier ◽  
S. A. Ilovaisky ◽  
C. Motch ◽  
M. Pakull ◽  
J. Lub ◽  
...  

2017 ◽  
Vol 14 (S339) ◽  
pp. 47-49
Author(s):  
G. Hosseinzadeh

AbstractThis paper presented very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light-curve is unique in that during the first five days of observations it has a blue bump in the U, B, and g bands which is clearly resolved by virtue of our photometric cadence of 5.7 hr during that time span. We modelled the light-curve as the combination of an early shock of the supernova ejecta against a non-degenerate companion star plus a standard Type Ia supernova component. Our best-fit model suggested the presence of a subgiant star 56 R⊙ from the exploding white dwarf, although that number is highly model-dependent. While the model matches the optical light-curve well, it over-predicts the flux expected in the ultraviolet bands. That may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual distribution of the element Ni. Early optical spectra of SN 2017cbv show strong carbon absorption as far as day –13 with respect to maximum light, suggesting that the progenitor system contained a significant amount of unburnt material. These results for SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovæ for resolving standing questions about the progenitor systems and explosion mechanisms of Type Ia supernovæ.


1981 ◽  
Vol 30 (1-4) ◽  
pp. 405-406 ◽  
Author(s):  
C. Chevalier ◽  
S. A. Ilovaisky ◽  
C. Motch ◽  
M. Pakull ◽  
J. Lub ◽  
...  

1977 ◽  
Vol 42 ◽  
pp. 149-181
Author(s):  
B. Wolf

AbstractThe observations of two rather different classical novae, V 1500 Cyg (= Nova Cyg 1975) and NQ Vul (= Nova Vul 1976), are presented and compared. Nova Cyg 1975 is outstanding with respect to absolute magnitude (M = -10), range of brightening (Δm = 19), and speed of evolution (t3= 3.6 days). Its prenova object had to be fainter than about magnitude 9. The corresponding values for Nova Vul 1976 are rather conservative (M≈-7.5, Δm ≈ 12, t3=40 days, absolute magnitude of the prenova ≈4.5). The light curve of Nova Cyg 1975 is very smooth. Some superimposed photometric variations of a small and slightly variable amplitude of a period of 3.4 hours are most naturally ascribed to a binary nature of Nova Cyg 1975. Nova Vul 1976 has a completely different lighteurve with extremely strong rapid irregular variations of considerably amplitude. There is a remarkable second maximum about 14 days after discovery.


2012 ◽  
Vol 21 (1-2) ◽  
Author(s):  
I. Hachisu ◽  
M. Kato

AbstractWe have analyzed the optical light curve of the symbiotic star V407 Cyg that underwent a classical nova outburst in 2010 March. Being guided by a supersoft X-ray phase observed during days 20-40 after the nova outburst, we are able to reproduce the light curve during a very early phase of the nova outburst. Our model consists of an outbursting white dwarf and an extended equatorial disk. An extremely massive white dwarf of 1.35-1.37 M


1994 ◽  
Vol 159 ◽  
pp. 390-390
Author(s):  
M.K. Babadzhanyants ◽  
E.T. Belokon'

We present new results of our monitoring program for the superluminal quasar 3C 345 having been in continuous operation since 1968. The photographic B-band observations newly reported were made in 1984-91 during 218 nights. The optical light curve (1965-91) containing all available B-band observations was obtained.


Sign in / Sign up

Export Citation Format

Share Document