The Orion Molecular Clouds OMC‐1 and OMC‐2 Mapped in the Far‐Infrared Fine‐Structure Line Emission of C+and O0

1997 ◽  
Vol 481 (1) ◽  
pp. 343-354 ◽  
Author(s):  
F. Herrmann ◽  
S. C. Madden ◽  
T. Nikola ◽  
A. Poglitsch ◽  
R. Timmermann ◽  
...  
1989 ◽  
Vol 120 ◽  
pp. 132-133
Author(s):  
R. Rubin ◽  
M. Morris ◽  
E.F. Erickson ◽  
S. Colgan ◽  
J. Simpson

The remarkable filament system seen in radio observations in the vicinity of the galactic center includes two thin filaments which arch away from the galactic plane (E.G. Yusef-Zadem et al 1984). The brightest part of each of these thermal structures is located at GO.10+0.02 and GO.07+0.04. Morris and Yusef-Zadem (1989) reason that photoionization by OB stars is unlikely on geometrical and morphological grounds. They suggest a magnetohydrodynamic mechanism to account for the radio emission and ionization. Erickson et al. (1968) were able to explain most of their observations of the far infrared (FIR) fine structure line emission from these locations in terms of a photoionization model.


2018 ◽  
Vol 617 ◽  
pp. A94 ◽  
Author(s):  
W. D. Langer ◽  
P. F. Goldsmith ◽  
J. L. Pineda ◽  
E. T. Chambers ◽  
K. Jacobs ◽  
...  

Context. Dense highly ionized boundary layers (IBLs) outside of the neutral Photon Dominated Regions (PDRs) have recently been detected via the 122 and 205 μm transitions of ionized nitrogen. These layers have higher densities than in the Warm Ionized Medium (WIM) but less than typically found in H II regions. Observations of [C II] emission, which is produced in both the PDR and IBL, do not fully define the characteristics of these sources. Observations of additional probes which just trace the PDRs, such as the fine structure lines of atomic oxygen, are needed derive their properties and distinguish among different models for [C II] and [N II] emissison. Aims. We derive the properties of the PDRs adjacent to dense highly ionized boundary layers of molecular clouds. Methods. We combine high-spectral resolution observations of the 63 μm [O I] fine structure line taken with the upGREAT HFA-band instrument on SOFIA with [C II] observations to constrain the physical conditions in the PDRs. The observations consist of samples along four lines of sight (LOS) towards the inner Galaxy containing several dense molecular clouds. We interpret the conditions in the PDRs using radiative transfer models for [C II] and [O I]. Results. We have a 3.5-σ detection of [O I] toward one source but only upper limits towards the others. We use the [O I] to [C II] ratio, or their upper limits, and the column density of C+ to estimate the thermal pressure, Pth, in these PDRs. In two LOS the thermal pressure is likely in the range 2–5 × 105 in units of K cm−3, with kinetic temperatures of order 75–100 K and H2 densities, n(H2) ~ 2–4 × 103 cm−3. For the other two sources, where the upper limits on [O I] to [C II] are larger, Pth ≲105 (K cm−3). We have also used PDR models that predict the [O I] to [C II] ratio, along with our observations of this ratio, to limit the intensity of the Far UV radiation field. Conclusions. The [C II] and [N II] emission with either weak, or without any, evidence of [O I] indicates that the source of dense highly ionized gas traced by [N II] most likely arises from the ionized boundary layers of clouds rather than from H II regions.


2015 ◽  
Vol 75-76 ◽  
pp. 199-200
Author(s):  
V. Ossenkopf ◽  
E. Koumpia ◽  
Y. Okada ◽  
B. Mookerjea ◽  
F.F.S. van der Tak

2019 ◽  
Vol 488 (2) ◽  
pp. 1489-1500 ◽  
Author(s):  
Kevin C Harrington ◽  
A Vishwas ◽  
A Weiß ◽  
B Magnelli ◽  
L Grassitelli ◽  
...  

ABSTRACT We report the detection of the far-infrared (FIR) fine-structure line of singly ionized nitrogen, [N ii] 205 $\mu$m , within the peak epoch of galaxy assembly, from a strongly lensed galaxy, hereafter ‘The Red Radio Ring’; the RRR, at z = 2.55. We combine new observations of the ground-state and mid-J transitions of CO (Jup = 1, 5, 8), and the FIR spectral energy distribution (SED), to explore the multiphase interstellar medium (ISM) properties of the RRR. All line profiles suggest that the H ii regions, traced by [N ii] 205 $\mu$m , and the (diffuse and dense) molecular gas, traced by CO, are cospatial when averaged over kpc-sized regions. Using its mid-IR-to-millimetre (mm) SED, we derive a non-negligible dust attenuation of the [N ii] 205 $\mu$m line emission. Assuming a uniform dust screen approximation results a mean molecular gas column density >1024 cm−2, with a molecular gas-to-dust mass ratio of 100. It is clear that dust attenuation corrections should be accounted for when studying FIR fine-structure lines in such systems. The attenuation corrected ratio of $L_{\rm N\,{\small II}205} / L_{\rm IR(8\!-\!1000\, \mu m)} = 2.7 \times 10^{-4}$ is consistent with the dispersion of local and z > 4 SFGs. We find that the lower limit, [N ii] 205 $\mu$m -based star formation rate (SFR) is less than the IR-derived SFR by a factor of 4. Finally, the dust SED, CO line SED, and $L_{\rm N\,{\small II}205}$ line-to-IR luminosity ratio of the RRR is consistent with a starburst-powered ISM.


1991 ◽  
Vol 147 ◽  
pp. 394-395
Author(s):  
P. Boisse

The penetration of visible and UV continuum radiation is a governing factor for many processes inside interstellar clouds. It determines for instance: 1) the overall chemical equilibrium (formation/destruction of molecules and neutral or ionized species, fractional ionization of the gas which is directly related to the coupling with the magnetic field); 2) the overall energy balance (heating of the dust, heating of the gas through collisions with electrons extracted from grains by the photoelectric effect or with grains; 3) cooling of the gas due to fine structure line emission (OI,CI,CII).


2007 ◽  
Vol 656 (1) ◽  
pp. 515-523 ◽  
Author(s):  
Alfred E. Glassgold ◽  
Joan R. Najita ◽  
Javier Igea

1978 ◽  
Vol 76 ◽  
pp. 103-110 ◽  
Author(s):  
David M Rank

The discovery of infrared continuum emission from NGC 7027 by Gillett, Low, and Stein in 1967 marked the beginning of far infrared observations of planetary nebulae. These early observations verified the predictions (Delmer, Gould, and Ramsey 1967) of infrared fine structure line emission from the SIV ion and also provided a surprise; namely, that the continuum radiation from planetary nebulae was not free-free emission from the gas, but rather that it was thermal emission from heated dust grains. In the ten years which have elapsed since 1967, numerous infrared emission lines have been observed and interpreted in many of the brighter planetary nebulae. In the middle infrared these lines were principally Ne II at 12.8μ, Gillett et al. (1969); SIV at 10.5μ, Holtz, et al. (1971), Gillett, et al. (1972), Aitken and Jones (1973); and AIII at 9.0μ Geballe and Rank (1973) and Gillett and Forrest (1973).


2012 ◽  
Vol 8 (S292) ◽  
pp. 184-187
Author(s):  
Ran Wang ◽  
Jeff Wagg ◽  
Chris L. Carilli ◽  
Fabian Walter ◽  
Xiaohui Fan ◽  
...  

AbstractWe have been carrying out a systematic survey of the star formation and ISM properties in the host galaxies of z∼6 quasars. Our 250 GHz observations, together with available data from the literature, yield a sample of 14 z∼6 quasars that are bright in millimeter dust continuum emission with estimated FIR luminosities of a few 1012 to 1013 L⊙. Most of these millimeter-detected z∼6 quasars have also been detected in molecular CO line emission, indicating molecular gas masses on order of 1010 M⊙. We have searched for [C II] 158 micron fine structure line emission toward four of the millimeter bright z∼6 quasars with ALMA and all of them have been detected. All these results suggest massive star formation at rates of about 600 to 2000 M⊙ yr−1 over the central few kpc region of these quasar host galaxies.


Sign in / Sign up

Export Citation Format

Share Document