Chloroplast Development: Fine Structure and Chlorophyll Synthesis

1972 ◽  
Vol 47 (2) ◽  
pp. 160-191 ◽  
Author(s):  
Joanne Rosinski ◽  
Walter G. Rosen
2018 ◽  
Vol 94 (6) ◽  
pp. 1126-1140 ◽  
Author(s):  
Lanhuan Meng ◽  
Zhongqi Fan ◽  
Qiang Zhang ◽  
Cuicui Wang ◽  
Ying Gao ◽  
...  

2015 ◽  
Vol 43 (1) ◽  
pp. 149-160 ◽  
Author(s):  
Fortunat Młodzianowski ◽  
Ewa Gezela

Chlorophyll synthesis in detached lupin cotyledons under low light intensity was stimulated by kinetin at 20 mg/l and inhibited by chloramphenicol at 50 mg/1. Kinetin not only conteracted the inhibitory effect of chloramphenicol, but stimulated1 the chlorophyll syntesis to a greater level than in the control material. Kinetin accelerated the starch degradation and the development of chloroplast; its prolonged, action, however, produced some abnormalities, such as an excessive growth of plastids resulting in some cases in bursting of their envelopes, the formation and release f r om plastids of numerous membrane - bound bodies and the accumulation in released and swollen thylakoids of electron - dense substance. In the presence of chloramphenicol, some disturbances in structure of the stroma thylakoids and the appearance of vesicular structures in the stroma and the enlargement of grana and swelling of their thylakoids were observed. Kinetin prevented some of these abnormalities.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 851 ◽  
Author(s):  
Ming-Hui Zhao ◽  
Xiang Li ◽  
Xin-Xin Zhang ◽  
Heng Zhang ◽  
Xi-Yang Zhao

Color mutation is a common, easily identifiable phenomenon in higher plants. Color mutations usually affect the photosynthetic efficiency of plants, resulting in poor growth and economic losses. Therefore, leaf color mutants have been unwittingly eliminated in recent years. Recently, however, with the development of society, the application of leaf color mutants has become increasingly widespread. Leaf color mutants are ideal materials for studying pigment metabolism, chloroplast development and differentiation, photosynthesis and other pathways that could also provide important information for improving varietal selection. In this review, we summarize the research on leaf color mutants, such as the functions and mechanisms of leaf color mutant-related genes, which affect chlorophyll synthesis, chlorophyll degradation, chloroplast development and anthocyanin metabolism. We also summarize two common methods for mapping and cloning related leaf color mutation genes using Map-based cloning and RNA-seq, and we discuss the existing problems and propose future research directions for leaf color mutants, which provide a reference for the study and application of leaf color mutants in the future.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Genzhong Liu ◽  
Huiyang Yu ◽  
Lei Yuan ◽  
Changxing Li ◽  
Jie Ye ◽  
...  

AbstractIn plants, chloroplasts are the sites at which photosynthesis occurs, and an increased abundance of chloroplasts increases the nutritional quality of plants and the resultant color of fruits. However, the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in tomato fruits remain unknown. In this study, we isolated a chlorophyll-deficient mutant, reduced chlorophyll mutant 1 (rcm1), by ethylmethanesulfonate mutagenesis; this mutant produced yellowish fruits with altered chloroplast development. MutMap revealed that Solyc08g005010 is the causal gene underlying the rcm1 mutant phenotype. A single-nucleotide base substitution in the second exon of SlRCM1 results in premature termination of its translated protein. SlRCM1 encodes a chloroplast-targeted metalloendopeptidase that is orthologous to the BCM1 protein of Arabidopsis and the stay-green G protein of soybean (Glycine max L. Merr.). Notably, the yellowish phenotype of the lutescent1 mutant can be restored with the allele of SlRCM1 from wild-type tomato. In contrast, knockout of SlRCM1 by the CRISPR/Cas9 system in Alisa Craig yielded yellowish fruits at the mature green stage, as was the case for lutescent1. Amino acid sequence alignment and functional complementation assays showed that SlRCM1 is indeed Lutescent1. These findings provide new insights into the regulation of chloroplast development in tomato fruits.


1991 ◽  
Vol 18 (6) ◽  
pp. 583 ◽  
Author(s):  
JW Yu ◽  
KC Woo

The development of photosynthetic capacity and photorespiration during chloroplast development in 7-day-old etiolated oat (Avena sativa L.) primary leaves was investigated together with changes in the activity of possible NH3-assimilating enzymes. The development of photosynthetic CO2 fixation and photorespiration capacity, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and glutamine synthetase (GS) activities comparable to green leaves were completed within 48 h of continuous illumination. Chlorophyll synthesis and glutamate synthase (GOGAT) activity continued to increase beyond this time. Within this 48-h period, the activities of Rubisco, GS and GOGAT increased 2.3, 2 and 3 times repectively. Throughout the greening treatment, the GS and GOGAT activities were always high enough to sustain the expected rate of photorespiratory NH3 production. In contrast, glutamate dehydrogenase activity decreased during greening, and its measured rate was not high enough for photorespirtory NH3 assimilation. These results support the idea that the GS/GOGAT pathway is the major, if not the only, route for photorespiratory NH3 assimilation in the light in leaves of higher plants.


Sign in / Sign up

Export Citation Format

Share Document