scholarly journals X-Ray Properties of Pre-Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods

2004 ◽  
Vol 127 (6) ◽  
pp. 3537-3552 ◽  
Author(s):  
Keivan G. Stassun ◽  
David R. Ardila ◽  
Mary Barsony ◽  
Gibor Basri ◽  
Robert D. Mathieu

2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.



2004 ◽  
Vol 219 ◽  
pp. 211-222
Author(s):  
Eric D. Feigelson

I review here recent advances in our understanding of magnetic activity in pre-main sequence (PMS) protostars and T Tauri stars. Results are based on recent imaging, spectroscopic and temporal studies of nearby star forming regions from the Chandra X — ray Observatory and XMM — Newton, including a first look at an ultradeep Chandra exposure of the Orion Nebula Cluster.Pre-main sequence stars exhibit a high level of X-ray emission dominated by a bewildering variety of magnetic reconnection flares. Activity is linked to bulk stellar properties — Lbol, mass, surface area or volume — rather than rotation. This suggests that dynamo processes in deeply convective PMS stars may fundamentally differ from the tachocline dynamo operating in main sequence stars.X-rays and MeV particles from magnetic flares will affect the circumstellar environment in PMS systems, particularly the protoplanetary disk. X-ray emission may influence: disk ionization, turbulence and viscosity; Jovian planet formation and migration; the production of meteoritic isotopes and melting of meteoritic chondrules; the heating and chemistry of the disk. X-ray surveys are also effective in locating post-T Tauri stars for disk evolution studies.



1999 ◽  
Vol 16 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Eric E. Mamajek ◽  
Warrick A. Lawson ◽  
Eric D. Feigelson

AbstractA radio continuum survey of X-ray-identified weak-lined T Tauri stars (WTTs) in the newly-discovered η Chamaeleontis cluster has been completed using the Australia Telescope Compact Array (ATCA). The 10 known WTTs in the cluster form a unique sample of codistant late-type pre-main-sequence stars with ages of ~8 Myr and masses ranging from 0·1–1·0 M⊙. Our survey detected none of the 10 X-ray-emitting WTTs with 3σ sensitivity limits at 4·8 and 8·6 GHz (6·2 and 3·5 cm) of typically 0·4 mJy, corresponding to a radio luminosity of 4·5 ×1015 erg Hz−1 s−1. Rotation periods for these stars indicate that they are not, as a group, fast-rotating stars. The non-detection in the radio bands supports the findings of other radio surveys of inhomogeneous samples of young stars, where radio emission is fairly common (10–30%) among very young T Tauri stars across all late spectral types, but confined to rapidly-rotating F-G-K stars amongst older zero-age main sequence stars. Rotation, more than youth, appears to be the key to radio emission in young stars.



2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.



2004 ◽  
Vol 215 ◽  
pp. 125-126 ◽  
Author(s):  
M. Lamm ◽  
C.A.L. Bailer-Jones ◽  
R. Mundt ◽  
W. Herbst

We present the results of a photometric monitoring program of pre-main sequence (PMS) stars in the young (2-4 Myr) open cluster NGC 2264 (d=700 pc). We find that the rotation periods are mass dependent and show a bimodal distribution for higher mass stars with M ≳ 0.3 M⊙ and a unimodal distribution for lower mass stars with M ≲ 0.3 M⊙.



2010 ◽  
Vol 6 (S275) ◽  
pp. 404-405
Author(s):  
María V. del Valle ◽  
Gustavo E. Romero

AbstractT Tauri stars are low mass, pre-main sequence stars. These objects are surrounded by an accretion disk and present strong magnetic activity. T Tauri stars are copious emitters of X-ray emission which belong to powerful magnetic reconnection events. Strong magnetospheric shocks are likely outcome of massive reconnection. Such shocks can accelerate particles up to relativistic energies through Fermi mechanism. We present a model for the high-energy radiation produced in the environment of T Tauri stars. We aim at determining whether this emission is detectable. If so, the T Tauri stars should be very nearby.



2018 ◽  
Vol 618 ◽  
pp. A48 ◽  
Author(s):  
M. Mittag ◽  
J. H. M. M. Schmitt ◽  
K.-P. Schröder

The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R+HK in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R+HK values are derived from the respective S-indices and related to the rotation periods in various B–V-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R+HK approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R+HK, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used.



2006 ◽  
Vol 452 (3) ◽  
pp. 1001-1010 ◽  
Author(s):  
B. Stelzer ◽  
N. Huélamo ◽  
G. Micela ◽  
S. Hubrig


2021 ◽  
Vol 916 (1) ◽  
pp. 32
Author(s):  
Konstantin V. Getman ◽  
Eric D. Feigelson


Sign in / Sign up

Export Citation Format

Share Document